nutonomy_pointpillars 项目教程
项目介绍
nutonomy_pointpillars 是一个开源项目,旨在将 PointPillars Pytorch 模型转换为 ONNX 格式,以便使用 TensorRT 进行加速推理。PointPillars 是一种用于点云数据中目标检测的快速编码器,该项目基于 nuTonomy/second.pytorch 实现,并针对 KITTI 数据集进行了优化。
项目快速启动
环境准备
-
拉取 Docker 环境:
docker pull smallmunich/suke_pointpillars:v1
-
启动 Docker 环境并激活 Conda 环境:
docker run -it smallmunich/suke_pointpillars:v1 conda activate pointpillars
代码克隆与安装
-
克隆代码:
git clone https://github.com/SmallMunich/nutonomy_pointpillars.git
-
安装 Python 包:
conda create -n pointpillars python=3.6 anaconda source activate pointpillars conda install shapely pybind11 protobuf scikit-image numba pillow conda install pytorch torchvision -c pytorch conda install google-sparsehash -c bioconda
-
设置环境变量:
NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice export PYTHONPATH=$PYTHONPATH:/your_root_path/nutonomy_pointpillars/
数据准备
-
下载 KITTI 数据集并创建目录结构:
└── KITTI_DATASET_ROOT ├── training <-- 7481 train data │ ├── image_2 <-- for visualization │ ├── calib │ ├── label_2 │ ├── velodyne │ └── velodyne_reduced <-- empty directory └── testing <-- 7580 test data ├── image_2 <-- for visualization ├── calib ├── velodyne └── velodyne_reduced <-- empty directory
-
创建 KITTI 信息文件:
python create_data.py create_kitti_info_file --data_path=KITTI_DATASET_ROOT
-
创建简化点云数据:
python create_data.py create_reduced_point_cloud --data_path=KITTI_DATASET_ROOT
应用案例和最佳实践
应用案例
nutonomy_pointpillars 主要应用于自动驾驶领域中的目标检测任务,特别是在处理点云数据时,能够提供快速且高效的推理性能。通过将 Pytorch 模型转换为 ONNX 格式并使用 TensorRT 进行加速,可以显著提升推理速度,适用于实时应用场景。
最佳实践
-
模型转换:
- 将 Pytorch 模型转换为 ONNX 格式,以便使用 TensorRT 进行加速推理。
- 使用提供的 Docker 环境,简化环境配置过程。
-
性能优化:
- 确保使用最新版本的 TensorRT 和相关依赖库。
- 对点云数据进行预处理,减少数据量,提高处理速度。
典型生态项目
nuTonomy/second.pytorch
nutonomy_pointpillars 基于 nuTonomy/second.pytorch 实现,second.pytorch 是一个用于点云数据中目标检测的 Pytorch 实现库,提供了丰富的功能和优化策略。
TensorRT
TensorRT 是 NVIDIA 推出的高性能深度学习推理引擎,支持多种深度学习框架,能够显著提升推理性能。nutonomy_pointpillars 利用 TensorRT 进行加速推理,提高处理速度。
ONNX
ONNX (Open Neural Network Exchange) 是一个开放的深度学习模型交换格式,支持不同深度学习框架之间的模型转换。nutonomy_pointpillars 使用 ONNX 格式进行模型转换,便于在不同平台上进行部署和优化。
通过以上模块的介绍和实践,您可以快速上手 nutonomy_pointpillars 项目,并在实际应用中获得高效的点云目标
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04