nutonomy_pointpillars 项目教程
项目介绍
nutonomy_pointpillars 是一个开源项目,旨在将 PointPillars Pytorch 模型转换为 ONNX 格式,以便使用 TensorRT 进行加速推理。PointPillars 是一种用于点云数据中目标检测的快速编码器,该项目基于 nuTonomy/second.pytorch 实现,并针对 KITTI 数据集进行了优化。
项目快速启动
环境准备
-
拉取 Docker 环境:
docker pull smallmunich/suke_pointpillars:v1 -
启动 Docker 环境并激活 Conda 环境:
docker run -it smallmunich/suke_pointpillars:v1 conda activate pointpillars
代码克隆与安装
-
克隆代码:
git clone https://github.com/SmallMunich/nutonomy_pointpillars.git -
安装 Python 包:
conda create -n pointpillars python=3.6 anaconda source activate pointpillars conda install shapely pybind11 protobuf scikit-image numba pillow conda install pytorch torchvision -c pytorch conda install google-sparsehash -c bioconda -
设置环境变量:
NUMBAPRO_LIBDEVICE=/usr/local/cuda/nvvm/libdevice export PYTHONPATH=$PYTHONPATH:/your_root_path/nutonomy_pointpillars/
数据准备
-
下载 KITTI 数据集并创建目录结构:
└── KITTI_DATASET_ROOT ├── training <-- 7481 train data │ ├── image_2 <-- for visualization │ ├── calib │ ├── label_2 │ ├── velodyne │ └── velodyne_reduced <-- empty directory └── testing <-- 7580 test data ├── image_2 <-- for visualization ├── calib ├── velodyne └── velodyne_reduced <-- empty directory -
创建 KITTI 信息文件:
python create_data.py create_kitti_info_file --data_path=KITTI_DATASET_ROOT -
创建简化点云数据:
python create_data.py create_reduced_point_cloud --data_path=KITTI_DATASET_ROOT
应用案例和最佳实践
应用案例
nutonomy_pointpillars 主要应用于自动驾驶领域中的目标检测任务,特别是在处理点云数据时,能够提供快速且高效的推理性能。通过将 Pytorch 模型转换为 ONNX 格式并使用 TensorRT 进行加速,可以显著提升推理速度,适用于实时应用场景。
最佳实践
-
模型转换:
- 将 Pytorch 模型转换为 ONNX 格式,以便使用 TensorRT 进行加速推理。
- 使用提供的 Docker 环境,简化环境配置过程。
-
性能优化:
- 确保使用最新版本的 TensorRT 和相关依赖库。
- 对点云数据进行预处理,减少数据量,提高处理速度。
典型生态项目
nuTonomy/second.pytorch
nutonomy_pointpillars 基于 nuTonomy/second.pytorch 实现,second.pytorch 是一个用于点云数据中目标检测的 Pytorch 实现库,提供了丰富的功能和优化策略。
TensorRT
TensorRT 是 NVIDIA 推出的高性能深度学习推理引擎,支持多种深度学习框架,能够显著提升推理性能。nutonomy_pointpillars 利用 TensorRT 进行加速推理,提高处理速度。
ONNX
ONNX (Open Neural Network Exchange) 是一个开放的深度学习模型交换格式,支持不同深度学习框架之间的模型转换。nutonomy_pointpillars 使用 ONNX 格式进行模型转换,便于在不同平台上进行部署和优化。
通过以上模块的介绍和实践,您可以快速上手 nutonomy_pointpillars 项目,并在实际应用中获得高效的点云目标
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00