高性能优化版word2vec —— pWord2Vec
2024-05-30 04:47:29作者:温艾琴Wonderful
:warning: 重要通知 - 此项目已经由Intel停止维护,但如果你有兴趣独立开发或维护社区的开源软件版本,可以创建自己的fork。
pWord2Vec是一个针对Intel Xeon和Xeon Phi(Knights Landing)处理器优化的C++实现的word2vec工具。它引入了"HogBatch"并行随机梯度下降策略,如在NIPS工作坊论文中详细描述的那样:“Parallelizing Word2Vec in Multi-Core and Many-Core Architectures” 。此外,通过MPI进行数据并行化计算,可以在CPU集群上分布处理任务。
这个代码库是基于Google的原始word2vec实现构建的。
许可证
包中的所有源代码文件均遵循Apache License 2.0。
先决条件
以下软件依赖项需要在UNIX系统上安装:
- Intel Compiler(专为Intel CPU优化)
- OpenMP(在安装Intel编译器后即已包含)
- MKL(建议使用最新版本“16.0.0或更高”)
- MPI库,支持多线程(适用于分布式word2vec的Intel MPI、MPICH2或MVAPICH2)
- HyperWords(用于模型准确性的评估)
- Numactl包(对于多插槽NUMA系统)
环境设置
- 安装Intel C++开发环境(包括Intel编译器、OpenMP、MKL"16.0.0或更高"以及iMPI。部分用户可以获得免费副本)
- 启动Intel C++开发环境:
source /opt/intel/compilers_and_libraries/linux/bin/compilervars.sh intel64 (请指向你的安装路径)
source /opt/intel/impi/latest/compilers_and_libraries/linux/bin/compilervars.sh intel64 (请指向你的安装路径)
- 安装numactl包:
sudo yum install numactl (在RedHat/Centos)
sudo apt-get install numactl (在Ubuntu)
快速启动
- 下载代码:
git clone https://github.com/IntelLabs/pWord2Vec - 运行
.install.sh以构建包(例如,下载HyperWords并编译源代码。) - 获取数据:
cd data; ./getText8.sh 或 ./getBillion.sh - 运行演示脚本:
cd sandbox; ./run_single_text8.sh (单机示例)或 ./run_mpi_text8.sh (分布式w2v示例) - 在10亿词基准上运行:
cd billion; ./run_single.sh (单机w2v) 或 ./run_mpi.sh (分布式w2v) (请设置ncores为你机器的逻辑核心数) - 评估模型:
cd sandbox; ./eval.sh 或 cd billion; ./eval.sh
参考文献
- Parallelizing Word2Vec in Shared and Distributed Memory,IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS),Vol. 30, No. 9, 2019年9月1日。
- Parallelizing Word2Vec in Multi-Core and Many-Core Architectures,NIPS工作坊上的高效深度神经网络方法,2016年12月。
如有问题或发现bug,请访问https://grid.cs.gsu.edu/~sji/联系作者。
项目特点
- 高性能优化:特别针对Intel Xeon和Xeon Phi处理器进行了优化,提供更快的训练速度。
- 并行计算:采用"HogBatch"并行SGD算法,实现多核和多芯片架构下的高效并行处理。
- MPI支持:通过MPI实现数据并行化,允许在CPU集群上执行大规模的分布式训练。
- 便捷部署与评估:提供自动下载数据集、一键式训练和模型评估的脚本,方便快速测试和应用。
- 广泛的应用场景:可用于自然语言处理的多个领域,如信息检索、情感分析、语义理解等。
无论你是研究者还是开发者,如果你想在大型文本数据集上快速训练高质量的词向量模型,pWord2Vec都是一个值得尝试的选择。它的高性能和并行化特性将帮助你在有限的时间内获得更深入的洞察力。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218