OpenNI 技术文档
2024-12-27 06:07:49作者:翟萌耘Ralph
1. 安装指南
Windows 系统安装指南
- 安装 Microsoft Visual Studio 2010:从 Microsoft 官方网站下载并安装。
- 安装 Microsoft Kinect SDK v1.6:从 Microsoft 官方网站下载并安装。
- 安装 Python 2.6+/3.x:从 Python 官方网站下载并安装。
- 安装 PyWin32:从 SourceForge.net 网站下载与 Python 版本相匹配的 PyWin32。
- 安装 JDK 6.0:从 Oracle 官方网站下载并安装,同时设置环境变量
JAVA_HOME指向 JDK 安装目录。 - 安装 WIX 3.5:从 WIX 官方网站下载并安装。
- 安装 Doxygen:从 Doxygen 官方网站下载并安装。
- 安装 GraphViz:从 GraphViz 官方网站下载并安装。
Linux 系统安装指南
- 安装 GCC 4.x:使用
sudo apt-get install g++命令安装。 - 安装 Python 2.6+/3.x:使用
sudo apt-get install python命令安装。 - 安装 LibUSB 1.0.x:使用
sudo apt-get install libusb-1.0-0-dev命令安装。 - 安装 LibUDEV:使用
sudo apt-get install libudev-dev命令安装。 - 安装 JDK 6.0:从 Oracle 官方网站下载并安装,同时设置环境变量
JAVA_HOME指向 JDK 安装目录。
2. 项目的使用说明
本项目是基于 OpenNI 开发的一个开源项目。OpenNI 是一个开源框架,用于支持多种深度传感器。本项目主要用于支持 Occipital 的 Structure Sensor 和 Structure Core 深度传感器。
用户可以通过本项目提供的 API,实现以下功能:
- 获取深度图像
- 获取红外图像
- 获取点云数据
- 获取用户骨骼数据
3. 项目API使用文档
以下是一些常用的 API:
获取深度图像
void getDepthImage(sensor::DepthSensor& depthSensor, cv::Mat& depthImage) {
depthSensor.startCapture();
depthSensor.readFrame(depthImage);
}
获取红外图像
void getInfraredImage(sensor::DepthSensor& depthSensor, cv::Mat& infraredImage) {
depthSensor.startCapture();
depthSensor.readFrame(infraredImage);
}
获取点云数据
void getPointCloud(sensor::DepthSensor& depthSensor, std::vector<float>& pointCloud) {
depthSensor.startCapture();
depthSensor.readFrame(pointCloud);
}
获取用户骨骼数据
void getUserSkeleton(sensor::DepthSensor& depthSensor, std::vector<bond::Skeleton>& skeletons) {
depthSensor.startCapture();
depthSensor.readFrame(skeletons);
}
4. 项目安装方式
本项目支持以下安装方式:
- 直接下载源代码,然后在本地编译。
- 使用包管理工具,如
pip,安装预编译的包。
以下是使用 pip 安装预编译包的示例:
pip install openni
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249