jsNet深度学习库使用手册
欢迎来到jsNet,一个基于JavaScript和WebAssembly的深度学习框架,特别适用于多层感知机(MLPs)和卷积神经网络(CNNs)。本手册将引导您了解项目结构、启动过程以及关键配置文件的使用。
1. 项目目录结构及介绍
jsNet项目在GitHub上的结构是精心设计的,以支持易于开发和部署。以下是其核心组成部分:
-
根目录:
CHANGELOG.md: 记录了项目版本的更新历史。LICENSE: MIT许可证,表明软件的使用权限。README.md: 快速入门指南和项目概述。- 主要源代码和配置文件分布在不同的子目录中。
-
src: 包含主要的C++源码,用于构建后端的深度学习逻辑。
-
dist: 编译后的前端JavaScript文件和可能的WebAssembly组件,包括不同环境的加载策略。
jsNet.js,jsNet.min.js: JavaScript版本的入口点。jsNetWebAssembly.min.js: WebAssembly版本的加载脚本。NetWASM.wasm: 编译后的WebAssembly二进制文件。
-
examples: 示例代码和应用,展示如何在实际中使用jsNet。
-
test: 单元测试或示例数据,用于验证库的功能。
-
package.json: NPM包管理配置,允许通过NPM安装。
-
CMakeLists.txt: 对于编译过程的CMake配置文件。
2. 项目的启动文件介绍
jsNet的启动依赖于是否选择JavaScript还是WebAssembly版本。对于前端使用,通常不会有一个直接的“启动”脚本,而是通过HTML页面或者Node.js服务来引入库并开始使用。
在浏览器中使用
-
JavaScript版本: 仅需在HTML中通过
<script>标签引入dist/jsNet.min.js即可开始使用。<script src="path/to/dist/jsNet.min.js"></script> -
WebAssembly版本: 需同时引入
jsNetWebAssembly.min.js和NetWASM.js,后者包含了WASM的加载逻辑。<script src="path/to/dist/jsNetWebAssembly.min.js"></script> <script src="path/to/dist/NetWASM.js"></script>
在Node.js环境中使用
通过npm安装jsnet后,可以在代码中动态选择加载JavaScript或WebAssembly版本。
const [Network, ...] = require("jsnet").js(); // 或 .webassembly()
当选择WebAssembly时,还需处理onWASMLoaded事件,确保所有操作在WASM加载完成后执行。
3. 项目的配置文件介绍
jsNet本身并不像一些大型框架那样有复杂的配置文件,它的配置更多地体现在实例化网络时传递的参数中。然而,关键的“配置”信息通常是通过以下几个方式体现的:
- 初始化网络时的参数:如层数、每层神经元数量等,这些是在创建
Network对象时直接指定的。 - 环境配置:例如,在使用WebAssembly版本时,通过环境变量或代码中指定
jsNetWASMPath来控制.wasm文件的路径。 - 自定义层配置:比如
FCLayer、ConvLayer等的具体配置,这是通过构造特定类型的层对象来完成的,而不是外部配置文件。
由于项目主要依赖代码中的逻辑配置而非独立的配置文件,理解API文档和示例代码成为配置jsNet的关键途径。通过阅读README.md和探索examples目录,您可以获得详细的配置指导和最佳实践。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00