jsNet 开源项目教程
2024-09-18 19:15:22作者:齐添朝
1. 项目介绍
jsNet 是一个用于 3D 点云的联合实例和语义分割的开源项目。该项目在 AAAI 2020 上发表,主要用于处理 3D 点云数据,能够同时进行实例分割和语义分割。jsNet 的核心算法结合了深度学习和点云处理技术,旨在提高 3D 点云数据的分割精度。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下依赖:
- Python 3.5
- TensorFlow 1.4
- h5py
2.2 下载项目
首先,从 GitHub 下载 jsNet 项目:
git clone https://github.com/DanRuta/jsNet.git
cd jsNet
2.3 数据准备
下载 3D 室内解析数据集(S3DIS Dataset),并将其放置在 data
目录下。
python utils/s3dis_utils/collect_indoor3d_data.py
python utils/s3dis_utils/s3dis_gen_h5.py
cd data && python generate_input_list.py && python generate_train_test_list.py
2.4 训练模型
使用以下命令开始训练模型:
cd models/JISS/
ln -s /path/to/data ./
python train.py \
--gpu 0 \
--data_root ./ \
--data_type numpy \
--max_epoch 100 \
--log_dir ./logs/train_5 \
--input_list data/train_file_list_woArea5.txt
2.5 测试模型
训练完成后,可以使用以下命令进行测试:
python test.py \
--gpu 0 \
--data_root ./ \
--data_type hdf5 \
--bandwidth 0.6 \
--num_point 4096 \
--log_dir ./logs/test_5 \
--model_path ./logs/train_5/epoch_99.ckpt \
--input_list data/test_hdf5_file_list_Area5.txt
2.6 评估模型
最后,使用以下命令评估模型的性能:
python eval_iou_accuracy.py --log_dir ./logs/test_5
3. 应用案例和最佳实践
3.1 应用案例
jsNet 可以广泛应用于 3D 点云数据的分割任务,例如:
- 室内场景解析:用于自动识别和分割室内场景中的不同物体和区域。
- 自动驾驶:用于处理和分割来自 LiDAR 传感器的 3D 点云数据,帮助自动驾驶系统更好地理解周围环境。
3.2 最佳实践
- 数据预处理:确保输入数据的格式和质量,以提高模型的训练效果。
- 超参数调优:根据具体任务调整模型的超参数,如学习率、批量大小等。
- 模型评估:定期评估模型的性能,确保其在实际应用中的准确性和稳定性。
4. 典型生态项目
jsNet 作为一个 3D 点云处理工具,可以与其他相关项目结合使用,形成更强大的解决方案:
- PointNet++:用于点云数据的深度学习框架,可以与 jsNet 结合使用,提高点云数据的处理能力。
- Open3D:一个开源的 3D 数据处理库,可以用于点云数据的预处理和可视化。
- TensorFlow:jsNet 的核心依赖,提供了强大的深度学习计算能力。
通过结合这些生态项目,可以构建更复杂的 3D 点云处理系统,满足不同应用场景的需求。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5