ModelMesh Serving 使用教程
1. 项目介绍
ModelMesh Serving 是一个用于管理 ModelMesh 的控制器,旨在提供一个通用的模型服务管理/路由层。它基于 Kubernetes,适用于需要高容量和高密度的实时模型服务场景。ModelMesh Serving 通过智能管理集群中 Pod 的内存模型数据,最大化系统资源的利用率。
主要特点
- 高容量和高密度:优化处理大量和高密度的模型服务请求。
- 智能管理:通过智能路由和模型放置策略,确保模型在正确的时间和地点加载。
- 支持多种模型格式:支持 TensorFlow、PyTorch、ONNX 等多种模型格式。
- 可扩展性:支持通过自定义运行时扩展以支持任意模型格式。
2. 项目快速启动
安装依赖
确保你已经安装了以下依赖:
- Kubernetes 集群
- kubectl 命令行工具
- Helm(可选,用于更方便的部署)
部署 ModelMesh Serving
-
克隆项目仓库:
git clone https://github.com/kserve/modelmesh-serving.git cd modelmesh-serving
-
部署控制器:
kubectl apply -f config/default/
-
验证部署:
kubectl get pods -n modelmesh-serving
创建模型服务
-
创建模型存储配置:
apiVersion: v1 kind: Secret metadata: name: model-storage-config type: Opaque stringData: storage-type: s3 s3-endpoint: "s3.amazonaws.com" s3-access-key: "your-access-key" s3-secret-key: "your-secret-key"
-
应用配置:
kubectl apply -f model-storage-config.yaml
-
创建模型服务:
apiVersion: serving.kserve.io/v1alpha1 kind: Predictor metadata: name: my-model spec: modelType: name: tensorflow storage: name: model-storage-config path: "models/my-model"
-
应用模型服务配置:
kubectl apply -f my-model-predictor.yaml
3. 应用案例和最佳实践
案例1:大规模图像识别服务
场景:在一个大规模的图像识别服务中,需要同时服务多个模型,并且模型更新频繁。
解决方案:使用 ModelMesh Serving 管理多个 TensorFlow 和 PyTorch 模型,通过智能路由和模型放置策略,确保高并发请求下的低延迟和高可用性。
案例2:实时推荐系统
场景:实时推荐系统需要快速响应用户请求,并且模型需要根据用户行为动态更新。
解决方案:通过 ModelMesh Serving 管理多个推荐模型,利用其智能管理功能,确保模型在用户行为变化时能够快速加载和卸载,提供实时的推荐服务。
4. 典型生态项目
KServe
KServe 是一个 Kubernetes 上的模型服务框架,提供了丰富的功能,如自动扩展、模型版本管理等。ModelMesh Serving 与 KServe 集成,提供了更强大的模型服务管理能力。
Triton Inference Server
Triton Inference Server 是 NVIDIA 提供的高性能模型服务框架,支持多种深度学习框架。ModelMesh Serving 通过集成 Triton Inference Server,提供了对深度学习模型的优化服务。
Seldon Core
Seldon Core 是一个开源的机器学习模型部署和管理平台,支持多种模型格式和服务方式。ModelMesh Serving 通过与 Seldon Core 的集成,提供了更灵活的模型服务管理方案。
通过以上模块的介绍,您可以快速了解并开始使用 ModelMesh Serving,结合实际应用案例和生态项目,进一步优化和扩展您的模型服务能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









