ModelMesh Serving 使用教程
1. 项目介绍
ModelMesh Serving 是一个用于管理 ModelMesh 的控制器,旨在提供一个通用的模型服务管理/路由层。它基于 Kubernetes,适用于需要高容量和高密度的实时模型服务场景。ModelMesh Serving 通过智能管理集群中 Pod 的内存模型数据,最大化系统资源的利用率。
主要特点
- 高容量和高密度:优化处理大量和高密度的模型服务请求。
- 智能管理:通过智能路由和模型放置策略,确保模型在正确的时间和地点加载。
- 支持多种模型格式:支持 TensorFlow、PyTorch、ONNX 等多种模型格式。
- 可扩展性:支持通过自定义运行时扩展以支持任意模型格式。
2. 项目快速启动
安装依赖
确保你已经安装了以下依赖:
- Kubernetes 集群
- kubectl 命令行工具
- Helm(可选,用于更方便的部署)
部署 ModelMesh Serving
-
克隆项目仓库:
git clone https://github.com/kserve/modelmesh-serving.git cd modelmesh-serving -
部署控制器:
kubectl apply -f config/default/ -
验证部署:
kubectl get pods -n modelmesh-serving
创建模型服务
-
创建模型存储配置:
apiVersion: v1 kind: Secret metadata: name: model-storage-config type: Opaque stringData: storage-type: s3 s3-endpoint: "s3.amazonaws.com" s3-access-key: "your-access-key" s3-secret-key: "your-secret-key" -
应用配置:
kubectl apply -f model-storage-config.yaml -
创建模型服务:
apiVersion: serving.kserve.io/v1alpha1 kind: Predictor metadata: name: my-model spec: modelType: name: tensorflow storage: name: model-storage-config path: "models/my-model" -
应用模型服务配置:
kubectl apply -f my-model-predictor.yaml
3. 应用案例和最佳实践
案例1:大规模图像识别服务
场景:在一个大规模的图像识别服务中,需要同时服务多个模型,并且模型更新频繁。
解决方案:使用 ModelMesh Serving 管理多个 TensorFlow 和 PyTorch 模型,通过智能路由和模型放置策略,确保高并发请求下的低延迟和高可用性。
案例2:实时推荐系统
场景:实时推荐系统需要快速响应用户请求,并且模型需要根据用户行为动态更新。
解决方案:通过 ModelMesh Serving 管理多个推荐模型,利用其智能管理功能,确保模型在用户行为变化时能够快速加载和卸载,提供实时的推荐服务。
4. 典型生态项目
KServe
KServe 是一个 Kubernetes 上的模型服务框架,提供了丰富的功能,如自动扩展、模型版本管理等。ModelMesh Serving 与 KServe 集成,提供了更强大的模型服务管理能力。
Triton Inference Server
Triton Inference Server 是 NVIDIA 提供的高性能模型服务框架,支持多种深度学习框架。ModelMesh Serving 通过集成 Triton Inference Server,提供了对深度学习模型的优化服务。
Seldon Core
Seldon Core 是一个开源的机器学习模型部署和管理平台,支持多种模型格式和服务方式。ModelMesh Serving 通过与 Seldon Core 的集成,提供了更灵活的模型服务管理方案。
通过以上模块的介绍,您可以快速了解并开始使用 ModelMesh Serving,结合实际应用案例和生态项目,进一步优化和扩展您的模型服务能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00