John the Ripper项目中的32位系统下WoWSRP格式内存问题分析
在John the Ripper密码恢复工具的开发过程中,开发团队发现了一个在32位Linux系统上特定条件下的内存问题。这个问题涉及到WoWSRP格式(Battle.net认证协议)的实现,特别是在使用GMP数学库而非OpenSSL的情况下。
问题现象
当在32位Linux系统上编译John the Ripper时(使用--without-openssl选项),运行测试命令john -te=0会出现内存错误。具体表现为:
Testing: WoWSRP, Battlenet [SHA1 32/32 GMP-exp]... (2xOMP) *** glibc detected *** malloc(): memory corruption: 0xb6e0af10 ***
Aborted
有趣的是,单独测试WoWSRP格式时却能通过测试。这表明问题可能与格式之间的交互有关。
问题定位
通过进一步测试,开发人员发现当同时测试AFS和WoWSRP格式时,问题可以稳定复现:
$ OMP_NUM_THREADS=1 ../run/john -te=0 -form=AFS,WoWSRP
Testing: AFS, Kerberos AFS [DES 48/64 4K MMX]... PASS
Testing: WoWSRP, Battlenet [SHA1 32/32 GMP-exp]... Segmentation fault
这表明问题可能与AFS格式使用的MMX指令集有关,影响了后续WoWSRP格式的执行。
根本原因分析
深入分析后发现,问题的根源在于32位x86架构下GMP数学库使用了x87浮点单元(FPU)进行计算,而AFS格式使用了MMX指令集。MMX与x87 FPU共享寄存器空间,当MMX指令执行后没有正确清理状态(EMMS指令),就会导致后续使用FPU的GMP库出现计算错误和内存问题。
解决方案
开发团队提出了两种解决方案:
- 强制使用EMMS指令:在x86.S汇编文件中添加EMMS宏定义,确保MMX状态被正确清理。
+++ b/src/x86.S
@@ -15,6 +15,8 @@
#include "arch.h"
+#define EMMS
+
#ifdef UNDERSCORES
#define DES_IV _DES_IV
- 在测试循环中添加EMMS调用:在bench.c文件中,在格式测试完成后显式调用emms()函数清理MMX状态。
+++ b/src/bench.c
@@ -1080,6 +1081,7 @@ next:
ldr_free_db(test_db, 1);
fmt_done(format);
#ifndef BENCH_BUILD
+ emms();
if (options.flags & FLG_MASK_CHK) {
mask_done();
mask_destroy();
技术背景
这个问题涉及到x86架构的几个重要特性:
- MMX技术:Intel引入的多媒体扩展指令集,使用浮点寄存器作为64位整数寄存器。
- x87 FPU:传统的浮点运算单元,与MMX共享寄存器空间。
- EMMS指令:用于清理MMX状态,将寄存器恢复为FPU可用状态。
在密码学计算中,GMP库在32位系统上常使用x87 FPU进行高精度数学运算,而密码哈希函数可能使用MMX指令进行优化。如果两者混用而没有正确状态管理,就会导致计算错误。
影响范围
这个问题特定于:
- 32位x86架构
- 使用GMP而非OpenSSL的编译配置
- 涉及MMX指令的格式(如AFS)与使用GMP的格式(如WoWSRP)连续测试的情况
结论
这个案例展示了在密码学工具开发中底层架构细节的重要性。即使是高级的密码算法实现,也可能因为底层指令集的微妙交互而产生问题。John the Ripper团队通过添加适当的EMMS指令调用,确保了MMX和FPU状态的正确管理,解决了这个内存问题。
对于开发者而言,这个案例强调了在多格式密码恢复工具中,不同加密算法实现之间的交互测试的重要性,特别是在涉及底层指令集优化的场景下。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00