首页
/ TensorFlow-XNN:打造高效商品价格预测模型

TensorFlow-XNN:打造高效商品价格预测模型

2024-05-23 11:42:15作者:鲍丁臣Ursa

TensorFlow-XNN:打造高效商品价格预测模型

项目介绍

TensorFlow-XNN 是一个基于TensorFlow的深度学习框架,旨在解决Mercari价格建议挑战。在Kaggle上,该项目荣获了第四名的好成绩。该模型设计巧妙,能够在有限的计算资源(4核CPU,16GB内存和1GB硬盘)内,在一小时内完成训练和推断任务。

项目技术分析

  • 简单预处理:项目采用了非常基础的预处理步骤,重点在于构建能够处理多类型输入(如文本和分类数据)的端到端学习模型。

  • 混合神经网络结构:模型由四个主要组件构成——嵌入(embed)、编码(encode)、注意力(attend)和预测(predict)。其中,FastText和基于神经网络的FM作为基本构建块。

  • 快照ensemble策略:采用纯 Bagging 方法,对相同架构的多个神经网络进行集成,通过快照 ensemble 提高模型性能和效率。

  • 优化与效率提升:利用Lazynadam优化器、FastText编码和平均池化等方法,确保在资源限制下的高效运行。

项目应用场景

  • 电子商务:TensorFlow-XNN 可用于电商平台的商品定价,通过对商品标题、描述等信息的理解,自动为新上架商品提供合理的价格建议。

  • 自然语言处理:其模型架构也适用于其他文本相关任务,如情感分析、关键词提取或搜索引擎排名。

  • 推荐系统:结合用户行为数据,可以构建个性化推荐系统,提高用户购买转化率。

项目特点

  1. 简洁高效:模型设计精简,无需大量特征工程,只需基础预处理即可实现高性能预测。

  2. 模块化设计:使用可复用的组件,便于调整和扩展,适应不同场景需求。

  3. 资源友好:能在低配环境下快速训练和推断,适用于各种实际部署环境。

  4. 强大性能:凭借多层神经网络和注意力机制,能有效捕捉复杂数据模式,提高预测精度。

总结

TensorFlow-XNN是深度学习在商品定价和文本理解领域的杰出实践,以其高效的模型构建和出色的表现力,展示了在有限硬件资源下如何利用深度学习解决问题的能力。无论是研究人员还是开发者,都可以从这个项目中学习到宝贵的经验,进一步推动自己的工作。赶紧尝试一下TensorFlow-XNN,看看它在你的应用中能发挥出怎样的能量吧!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5