TinyChatEngine 项目下载及安装教程
2024-12-09 16:48:22作者:幸俭卉
1. 项目介绍
TinyChatEngine 是一个用于在边缘设备上运行大型语言模型(LLM)和视觉语言模型(VLM)的推理库。它通过模型压缩技术(如 SmoothQuant 和 AWQ)实现了低精度的模型推理,使得用户可以在笔记本电脑、汽车、机器人等设备上获得即时响应,同时保护数据隐私。
2. 项目下载位置
要下载 TinyChatEngine 项目,请使用以下命令:
git clone --recursive https://github.com/mit-han-lab/TinyChatEngine.git
3. 项目安装环境配置
3.1 MacOS 环境配置
在 MacOS 上,您需要安装 boost 和 llvm 库。可以使用 Homebrew 进行安装:
brew install boost
brew install llvm
对于 M1/M2 用户,还需要从 App Store 安装 Xcode,以启用 Metal 编译器支持 GPU。
3.2 Windows 环境配置
3.2.1 Windows with CPU
在 Windows 上,您需要下载并安装 GCC 编译器和 MSYS2。请按照以下步骤操作:
- 下载并安装 MSYS2:MSYS2 安装教程
- 安装所需的依赖项:
pacman -S --needed base-devel mingw-w64-x86_64-toolchain make unzip git
- 将二进制目录(例如
C:\msys64\mingw64\bin和C:\msys64\usr\bin)添加到环境路径中。
3.2.2 Windows with Nvidia GPU (实验性)
- 安装 CUDA 工具包:CUDA 安装教程
- 安装 Visual Studio,并确保支持 C 和 C++ 开发。
4. 项目安装方式
4.1 下载项目
使用以下命令下载项目:
git clone --recursive https://github.com/mit-han-lab/TinyChatEngine.git
cd TinyChatEngine
4.2 安装 Python 包
TinyChatEngine 的主要代码库是用纯 C/C++ 编写的,Python 包仅用于从模型库中下载(和转换)模型。
conda create -n TinyChatEngine python=3.10 pip -y
conda activate TinyChatEngine
pip install -r requirements.txt
4.3 下载量化模型
根据您的设备类型,下载相应的量化模型:
4.3.1 x86 设备
cd llm
python tools/download_model.py --model LLaMA_3_8B_Instruct_awq_int4 --QM QM_x86
4.3.2 ARM 设备
cd llm
python tools/download_model.py --model LLaMA_3_8B_Instruct_awq_int4 --QM QM_ARM
4.3.3 CUDA 设备
cd llm
python tools/download_model.py --model LLaMA2_7B_chat_awq_int4 --QM QM_CUDA
4.4 编译并启动聊天
根据您的平台,修改 Makefile 中的相应配置,然后编译并启动聊天:
make chat -j
5. 项目处理脚本
TinyChatEngine 提供了一些处理脚本,用于下载和转换模型。以下是一些常用的脚本:
5.1 下载模型脚本
python tools/download_model.py --model <模型名称> --QM <量化方法>
5.2 编译脚本
make chat -j
5.3 启动聊天脚本
./chat
通过以上步骤,您可以成功下载并安装 TinyChatEngine 项目,并开始在您的设备上运行大型语言模型和视觉语言模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759