首页
/ Plotly-Resampler 使用教程

Plotly-Resampler 使用教程

2024-09-16 13:17:44作者:卓炯娓

1. 项目介绍

Plotly-Resampler 是一个用于可视化大规模时间序列数据的 Python 库。它通过动态聚合时间序列数据,使得在 Plotly 中可视化大量数据点(超过 100,000 个数据点)变得更加高效和响应迅速。该库的核心功能是通过时间序列数据点选择算法,动态聚合数据,并在用户交互(如平移或缩放)时更新图表。

主要特点

  • 动态聚合:根据当前图表视图动态聚合数据,确保高效响应。
  • 环境无关:支持 Jupyter、VSCode 笔记本、PyCharm 笔记本、Google Colab 等多种环境。
  • 多种聚合算法:支持多种序列聚合算法,用户可以选择或开发自己的聚合方法。

2. 项目快速启动

安装

首先,使用 pip 安装 Plotly-Resampler:

pip install plotly-resampler

基本使用

以下是一个简单的示例,展示如何在 Jupyter 环境中使用 Plotly-Resampler 可视化大规模时间序列数据。

import plotly.graph_objects as go
import numpy as np
from plotly_resampler import FigureResampler

# 生成大量数据
x = np.arange(1_000_000)
noisy_sin = (3 + np.sin(x / 200) + np.random.randn(len(x)) / 10) * x / 1_000

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(name='noisy sine', showlegend=True), hf_x=x, hf_y=noisy_sin)

# 显示图表
fig.show_dash(mode='inline')

3. 应用案例和最佳实践

案例1:金融市场数据可视化

在金融市场中,时间序列数据量通常非常庞大。使用 Plotly-Resampler 可以高效地可视化这些数据,同时保持交互性。

import pandas as pd
from plotly_resampler import FigureResampler

# 加载金融数据
data = pd.read_csv('financial_data.csv', parse_dates=['date'])

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(x=data['date'], y=data['price'], name='Stock Price'), hf_x=data['date'], hf_y=data['price'])

# 显示图表
fig.show_dash(mode='inline')

案例2:物联网数据可视化

在物联网应用中,传感器数据通常以高频率生成。Plotly-Resampler 可以帮助用户在不影响性能的情况下可视化这些数据。

import numpy as np
from plotly_resampler import FigureResampler

# 生成模拟的物联网数据
timestamps = np.arange(0, 1000000, 1)
sensor_data = np.sin(timestamps / 1000) + np.random.randn(len(timestamps)) / 10

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(x=timestamps, y=sensor_data, name='Sensor Data'), hf_x=timestamps, hf_y=sensor_data)

# 显示图表
fig.show_dash(mode='inline')

4. 典型生态项目

Plotly

Plotly 是一个强大的交互式图表库,支持多种图表类型和丰富的自定义选项。Plotly-Resampler 作为 Plotly 的扩展,进一步提升了其处理大规模数据的能力。

Dash

Dash 是一个用于构建数据可视化 Web 应用的框架,基于 Plotly。Plotly-Resampler 可以与 Dash 结合使用,提供高效的数据聚合和交互功能。

Jupyter

Jupyter 是一个广泛使用的交互式计算环境,支持多种编程语言。Plotly-Resampler 可以在 Jupyter 笔记本中无缝使用,提供高效的数据可视化体验。

通过以上模块的介绍,您应该能够快速上手并充分利用 Plotly-Resampler 进行大规模时间序列数据的可视化。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysqlxzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChatLangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admingin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vuesource-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madongmadong
基于Webman的权限管理系统
PHP
4
0
cool-admin-javacool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2