首页
/ Plotly-Resampler 使用教程

Plotly-Resampler 使用教程

2024-09-16 19:19:55作者:卓炯娓

1. 项目介绍

Plotly-Resampler 是一个用于可视化大规模时间序列数据的 Python 库。它通过动态聚合时间序列数据,使得在 Plotly 中可视化大量数据点(超过 100,000 个数据点)变得更加高效和响应迅速。该库的核心功能是通过时间序列数据点选择算法,动态聚合数据,并在用户交互(如平移或缩放)时更新图表。

主要特点

  • 动态聚合:根据当前图表视图动态聚合数据,确保高效响应。
  • 环境无关:支持 Jupyter、VSCode 笔记本、PyCharm 笔记本、Google Colab 等多种环境。
  • 多种聚合算法:支持多种序列聚合算法,用户可以选择或开发自己的聚合方法。

2. 项目快速启动

安装

首先,使用 pip 安装 Plotly-Resampler:

pip install plotly-resampler

基本使用

以下是一个简单的示例,展示如何在 Jupyter 环境中使用 Plotly-Resampler 可视化大规模时间序列数据。

import plotly.graph_objects as go
import numpy as np
from plotly_resampler import FigureResampler

# 生成大量数据
x = np.arange(1_000_000)
noisy_sin = (3 + np.sin(x / 200) + np.random.randn(len(x)) / 10) * x / 1_000

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(name='noisy sine', showlegend=True), hf_x=x, hf_y=noisy_sin)

# 显示图表
fig.show_dash(mode='inline')

3. 应用案例和最佳实践

案例1:金融市场数据可视化

在金融市场中,时间序列数据量通常非常庞大。使用 Plotly-Resampler 可以高效地可视化这些数据,同时保持交互性。

import pandas as pd
from plotly_resampler import FigureResampler

# 加载金融数据
data = pd.read_csv('financial_data.csv', parse_dates=['date'])

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(x=data['date'], y=data['price'], name='Stock Price'), hf_x=data['date'], hf_y=data['price'])

# 显示图表
fig.show_dash(mode='inline')

案例2:物联网数据可视化

在物联网应用中,传感器数据通常以高频率生成。Plotly-Resampler 可以帮助用户在不影响性能的情况下可视化这些数据。

import numpy as np
from plotly_resampler import FigureResampler

# 生成模拟的物联网数据
timestamps = np.arange(0, 1000000, 1)
sensor_data = np.sin(timestamps / 1000) + np.random.randn(len(timestamps)) / 10

# 创建 FigureResampler 对象
fig = FigureResampler(go.Figure())

# 添加数据
fig.add_trace(go.Scattergl(x=timestamps, y=sensor_data, name='Sensor Data'), hf_x=timestamps, hf_y=sensor_data)

# 显示图表
fig.show_dash(mode='inline')

4. 典型生态项目

Plotly

Plotly 是一个强大的交互式图表库,支持多种图表类型和丰富的自定义选项。Plotly-Resampler 作为 Plotly 的扩展,进一步提升了其处理大规模数据的能力。

Dash

Dash 是一个用于构建数据可视化 Web 应用的框架,基于 Plotly。Plotly-Resampler 可以与 Dash 结合使用,提供高效的数据聚合和交互功能。

Jupyter

Jupyter 是一个广泛使用的交互式计算环境,支持多种编程语言。Plotly-Resampler 可以在 Jupyter 笔记本中无缝使用,提供高效的数据可视化体验。

通过以上模块的介绍,您应该能够快速上手并充分利用 Plotly-Resampler 进行大规模时间序列数据的可视化。

登录后查看全文
热门项目推荐

项目优选

收起
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.18 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
188
265
kernelkernel
deepin linux kernel
C
22
6
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
arkanalyzerarkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45