Seurat项目中整合健康与疾病样本数据的处理方法
2025-07-02 20:39:29作者:毕习沙Eudora
概述
在单细胞RNA测序数据分析中,使用Seurat包进行样本整合是常见的预处理步骤。当研究人员同时分析健康对照(HC)和疾病样本时,经常需要将这些样本按照实验条件(健康vs疾病)而非单个样本进行分组分析。本文将详细介绍如何在Seurat中实现这一目标。
问题背景
在标准分析流程中,样本通常会按照其原始名称(如HC1、HC2、HC3等)被分开处理。然而,研究人员往往更关注健康组与疾病组之间的整体差异,而非单个样本间的差异。这就需要我们对样本进行重新分组。
解决方案
1. 创建新的分组变量
在Seurat对象中,我们可以通过添加新的元数据列来实现样本的重新分组:
# 假设原始样本名称为HC1、HC2、HC3(健康组)和D1、D2、D3(疾病组)
object$group <- ifelse(grepl("HC", object$Sample_Name), "HC", "Disease")
或者更通用的方法:
object$group <- paste0(object$Sample_Name, "_", object$condition)
2. 基于新分组进行整合分析
创建新分组变量后,可以按照以下步骤进行整合分析:
# 按照新定义的分组拆分对象
split.obj <- SplitObject(filtered.PSAHC, split.by = "group")
# 标准化和识别可变特征
split.obj <- lapply(split.obj, function(x) {
x <- NormalizeData(x)
x <- FindVariableFeatures(x, selection.method = "vst", nfeatures = 2000)
})
# 选择跨数据集的可变特征
integ.features <- SelectIntegrationFeatures(object.list = split.obj, nfeatures = 2000)
# 寻找整合锚点
anchors <- FindIntegrationAnchors(object.list = split.obj, anchor.features = integ.features)
# 整合数据
integrated.obj <- IntegrateData(anchorset = anchors)
3. 下游分析
整合完成后,可以继续进行降维和聚类分析:
# 设置默认分析为整合后的数据
DefaultAssay(integrated.obj) <- "integrated"
# 缩放数据
integrated.obj <- ScaleData(integrated.obj)
# 运行PCA
integrated.obj <- RunPCA(integrated.obj, npcs = 30)
# 运行UMAP
integrated.obj <- RunUMAP(integrated.obj, reduction = "pca", dims = 1:20)
# 可视化
DimPlot(integrated.obj, group.by = "group")
注意事项
-
样本平衡:当健康组和疾病组的样本数量不均衡时,可能会影响整合效果。可以考虑使用
FindIntegrationAnchors中的sample.tree参数进行手动调整。 -
批次效应:即使按照实验条件分组,仍需注意批次效应的影响。可以在整合时考虑加入批次校正。
-
质量控制:在整合前,应确保各组样本都经过了严格的质量控制,去除低质量细胞。
-
特征选择:
nfeatures参数的选择会影响整合效果,通常建议在2000-3000之间,可根据数据特点调整。
高级技巧
对于更复杂的实验设计,可以考虑:
- 层次整合:先整合组内样本,再整合组间数据
- 参考整合:指定一个组作为参考,其他组与之整合
- 加权整合:根据样本质量或细胞数量调整整合权重
通过以上方法,研究人员可以更灵活地控制数据整合过程,获得更有生物学意义的分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218