KataGo v1.16.1版本发布:数值稳定性优化与功能改进
KataGo是一个开源的围棋AI项目,它采用深度学习和蒙特卡洛树搜索(MCTS)算法来实现强大的围棋对弈能力。该项目不仅提供了高性能的围棋引擎,还包含了完整的训练框架,支持从零开始训练围棋AI模型。
数值稳定性优化
在v1.16.1版本中,开发团队重点解决了神经网络输出中出现非有限值(NaN或无限大)导致的崩溃问题。这个问题在以下两种情况下尤为明显:
- 使用TensorRT在19x19棋盘上处理极端贴目或结果时
- 在大棋盘尺寸上运行时,特别是使用未针对大棋盘训练的神经网络时
技术团队通过以下方式缓解了这一问题:
- 内部调整了神经网络的权重缩放方式,降低了激活值的典型幅度
- 在FP16模式下运行时,更好地利用了FP16的数值范围
- TensorRT现在将输出头转换为FP32的时间提前了一层
这些改进使得神经网络在极端情况下更加稳定,减少了崩溃的可能性。
其他引擎改进
基准测试修复
修复了benchmark命令中"-fixed-batch-size"和"-half-batch-size"参数在设置批次大小限制时的bug,使基准测试结果更加准确。
规则处理增强
现在KataGo能够更好地处理SGF文件或GTP命令中的简单劫争违规,就像处理超级劫规则违规一样。这一改进使得KataGo能够更灵活地处理各种输入格式。
编译标准升级
项目现在使用C++17标准进行编译,取代了之前的C++14标准。这一升级为未来的功能开发提供了更好的语言支持。
大棋盘支持改进
针对+bs50版本的可执行文件,修复了一些与棋盘尺寸相关的配置参数无法接受50x50最大值的问题。
TensorRT兼容性
更新了CMake逻辑以处理TensorRT新版本中头文件定义格式的变化,提高了与不同TensorRT版本的兼容性。
Python训练相关改进
代码结构重组
对Python目录进行了显著重组,将所有不直接运行的.py文件移动到python/katago/...包中。这一变化使得代码结构更加清晰,同时更新了所有脚本和自训练脚本的导入路径。
Windows兼容性增强
一些数据洗牌和训练脚本不再依赖符号链接数据位置,这使得这些脚本能够在Windows系统上更好地运行。
版本选择建议
对于终端用户,开发团队提供了几点建议:
- CUDA和TensorRT版本应匹配预编译的可执行文件标签
- OpenCL版本兼容性更好,但性能可能略低
- +bs50版本专为超大棋盘设计,在标准19x19棋盘上运行时可能效率较低
Linux用户需要注意,预编译的可执行文件基于Ubuntu 22.04系统构建,仍需自行安装相应的CUDA/TensorRT或OpenCL驱动。
这个版本主要解决了稳定性问题,特别是针对大棋盘和极端情况下的数值处理,同时改进了代码结构和跨平台兼容性,为围棋AI的研究和应用提供了更可靠的工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00