KataGo v1.16.1版本发布:数值稳定性优化与功能改进
KataGo是一个开源的围棋AI项目,它采用深度学习和蒙特卡洛树搜索(MCTS)算法来实现强大的围棋对弈能力。该项目不仅提供了高性能的围棋引擎,还包含了完整的训练框架,支持从零开始训练围棋AI模型。
数值稳定性优化
在v1.16.1版本中,开发团队重点解决了神经网络输出中出现非有限值(NaN或无限大)导致的崩溃问题。这个问题在以下两种情况下尤为明显:
- 使用TensorRT在19x19棋盘上处理极端贴目或结果时
- 在大棋盘尺寸上运行时,特别是使用未针对大棋盘训练的神经网络时
技术团队通过以下方式缓解了这一问题:
- 内部调整了神经网络的权重缩放方式,降低了激活值的典型幅度
- 在FP16模式下运行时,更好地利用了FP16的数值范围
- TensorRT现在将输出头转换为FP32的时间提前了一层
这些改进使得神经网络在极端情况下更加稳定,减少了崩溃的可能性。
其他引擎改进
基准测试修复
修复了benchmark命令中"-fixed-batch-size"和"-half-batch-size"参数在设置批次大小限制时的bug,使基准测试结果更加准确。
规则处理增强
现在KataGo能够更好地处理SGF文件或GTP命令中的简单劫争违规,就像处理超级劫规则违规一样。这一改进使得KataGo能够更灵活地处理各种输入格式。
编译标准升级
项目现在使用C++17标准进行编译,取代了之前的C++14标准。这一升级为未来的功能开发提供了更好的语言支持。
大棋盘支持改进
针对+bs50版本的可执行文件,修复了一些与棋盘尺寸相关的配置参数无法接受50x50最大值的问题。
TensorRT兼容性
更新了CMake逻辑以处理TensorRT新版本中头文件定义格式的变化,提高了与不同TensorRT版本的兼容性。
Python训练相关改进
代码结构重组
对Python目录进行了显著重组,将所有不直接运行的.py文件移动到python/katago/...包中。这一变化使得代码结构更加清晰,同时更新了所有脚本和自训练脚本的导入路径。
Windows兼容性增强
一些数据洗牌和训练脚本不再依赖符号链接数据位置,这使得这些脚本能够在Windows系统上更好地运行。
版本选择建议
对于终端用户,开发团队提供了几点建议:
- CUDA和TensorRT版本应匹配预编译的可执行文件标签
- OpenCL版本兼容性更好,但性能可能略低
- +bs50版本专为超大棋盘设计,在标准19x19棋盘上运行时可能效率较低
Linux用户需要注意,预编译的可执行文件基于Ubuntu 22.04系统构建,仍需自行安装相应的CUDA/TensorRT或OpenCL驱动。
这个版本主要解决了稳定性问题,特别是针对大棋盘和极端情况下的数值处理,同时改进了代码结构和跨平台兼容性,为围棋AI的研究和应用提供了更可靠的工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01