unsupervised-video-interpolation 的安装和配置教程
2025-05-29 01:03:36作者:秋泉律Samson
项目基础介绍和主要编程语言
unsupervised-video-interpolation 是一个由 NVIDIA 开发的开源项目,该项目实现了无监督视频插帧技术。它能够通过算法自动生成视频中的中间帧,从而提高视频的帧率,使得视频播放更加流畅。该项目主要使用 Python 编程语言,并且依赖于多种深度学习框架和库。
项目使用的关键技术和框架
该项目使用的关键技术包括循环一致性(Cycle Consistency)和超分辨率视频插帧技术。它利用深度学习模型,特别是基于卷积神经网络(CNN)的架构,来预测和生成视频序列中的缺失帧。以下是一些该项目中使用的关键框架和库:
- PyTorch:一个开源的机器学习库,用于应用如计算机视觉和自然语言处理等领域的深度学习。
- CUDA:NVIDIA 的并行计算平台和编程模型,用于执行高性能的数值计算。
- numpy:一个强大的 Python 库,用于进行科学计算。
- scikit-image:用于图像处理的 Python 库。
- imageio:用于读取和写入图像和视频的 Python 库。
- pillow:Python 的图像处理库。
- tqdm:一个快速,可扩展的Python进度条。
- tensorboardX:用于可视化机器学习实验的库。
- natsort:一个用于自然排序的 Python 库。
- ffmpeg:一个用于处理视频和音频文件的命令行工具。
项目安装和配置的准备工作
在开始安装 unsupervised-video-interpolation 项目之前,请确保你的系统满足以下要求:
- NVIDIA GPU 和 CUDA 9.0 或更高版本(某些操作只有 GPU 实现)。
- Python 3。
- pip(Python 的包管理器)。
项目安装步骤
-
克隆项目仓库
首先,需要从 GitHub 克隆项目仓库到本地环境中:
git clone https://github.com/NVIDIA/unsupervised-video-interpolation.git cd unsupervised-video-interpolation -
创建预训练模型文件夹
在项目目录中创建一个用于存放预训练模型的文件夹:
mkdir pretrained_models -
构建 Docker 镜像(可选)
如果选择使用 Docker,可以构建项目的 Docker 镜像:
docker build -t unsupervised-video-interpolation -f Dockerfile .如果不使用 Docker,则需要手动安装以下依赖项:
pip install torch torchvision pip install numpy scikit-image imageio pillow tqdm tensorboardX natsort -
安装 ffmpeg
安装 ffmpeg 工具,用于处理视频文件:
# 根据你的操作系统选择相应的安装命令 # Ubuntu: sudo apt-get update sudo apt-get install ffmpeg # CentOS: sudo yum install ffmpeg -
下载预训练模型
从项目提供的链接下载预训练模型,并将其放置在
pretrained_models文件夹中。 -
运行示例脚本
使用以下命令运行示例脚本进行测试:
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/input/sequences \ --name video_name --save /path/to/output/folder --post_fix output_image_tag \ --resume /path/to/pre-trained/model --write_video根据需要替换
--val_file,--name,--save,--post_fix和--resume参数的路径。
完成以上步骤后,unsupervised-video-interpolation 项目应该已经成功安装在您的系统中,并可以开始使用了。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
649
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
649