MLJ.jl项目中为支持带目标变量的无监督模型添加管道功能
在机器学习工作流中,管道(Pipeline)是一种将多个处理步骤串联起来的强大工具。MLJ.jl作为Julia语言的机器学习框架,近期针对一类特殊的模型提出了功能增强需求——那些在训练阶段需要目标变量但在预测阶段表现为无监督性质的模型。
问题背景
传统上,机器学习模型可以分为监督学习和无监督学习两大类。监督学习模型在训练和预测时都需要目标变量,而无监督模型则完全不需要目标变量。然而,存在一类特殊模型,如递归特征消除(RecursiveFeatureElimination)或目标编码器(Target Encoder),它们在训练阶段需要目标变量,但在预测/转换阶段则表现为无监督特性。
当前MLJ.jl的管道机制无法正确处理这类模型,因为在构建管道时,系统无法识别哪些"无监督"模型实际上在训练阶段需要目标变量。
技术挑战
主要的技术挑战在于如何让管道系统能够识别这类特殊模型的需求。最初考虑使用fit_data_scitype属性来解决这个问题,但随着Julia 1.10版本的更新,移除了对Tuple{Union{},...}类型的支持,使得这一方案变得不可行。
解决方案
项目团队提出了引入新特性target_in_fit的方案。这个特性将明确标识那些虽然被归类为无监督模型,但在训练阶段需要目标变量的模型。这一设计思路与正在发展的LearnAPI未来规范保持一致。
具体来说:
- 模型开发者需要为这类特殊模型设置
target_in_fit=true - 管道系统在训练时会检查这个标志
- 对于标记为
true的模型,管道会将目标变量传递给它们的fit方法
实现意义
这一改进将带来以下好处:
- 更准确地表达模型的真实行为
- 使管道能够支持更丰富的模型组合
- 为未来可能的API扩展奠定基础
- 提高代码的可读性和可维护性
技术影响
从技术架构角度看,这一变化:
- 保持了向后兼容性
- 遵循了最小惊讶原则
- 提供了清晰的扩展点
- 与现有生态系统良好集成
这种设计模式也可能为其他机器学习框架处理类似问题提供参考。
总结
MLJ.jl通过引入target_in_fit特性,巧妙地解决了管道中"半监督"模型的支持问题。这一改进不仅解决了当前的技术限制,还为框架未来的发展提供了更灵活的基础。对于机器学习从业者来说,这意味着能够更自由地组合各种预处理和建模步骤,构建更强大的机器学习工作流。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00