Monkey项目中LLM模块冻结与图像处理策略解析
2025-07-08 18:01:50作者:邵娇湘
冻结LLM模块的技术实现
在Monkey项目的多任务微调过程中,开发者需要冻结大型语言模型(LLM)的大部分参数,只保留LoRA(低秩适应)和Resampler模块可训练。这一技术决策主要基于以下考虑:
- 计算效率:冻结LLM主干可以显著减少训练时的显存占用和计算量
- 防止灾难性遗忘:保持预训练语言模型的核心能力不被微调过程破坏
- 参数高效微调:通过LoRA等轻量级适配器实现模型定制化
实现代码核心逻辑如下:
# 启用所有LoRA参数
for k,v in model.named_parameters():
if "lora" in k:
v.requires_grad_(True)
# 冻结LLM主干
if training_args.fix_llm and hasattr(model,'transformer') and hasattr(model.transformer,'h'):
model.transformer.h.requires_grad_(False) # 冻结所有transformer层
model.transformer.wte.requires_grad_(False) # 冻结词嵌入层
model.transformer.ln_f.requires_grad_(False) # 冻结最终层归一化
model.lm_head.requires_grad_(False) # 冻结语言模型头部
值得注意的是,项目中保留了注意力机制中的关键投影层(c_attn, attn.c_proj)和FFN层(w1, w2)的可训练性,这可能是为了保持模型一定的自适应能力。
视觉输入处理策略
Monkey项目对视觉输入采用了独特的处理方式:
- 统一分辨率:所有输入图像都会被resize到896×896的固定尺寸
- 分块处理:处理后的图像被划分为2×2的网格(共4个patch)加上全局图像(1个patch)
- Token分配:每个图像patch被编码为256个token,总计(2×2+1)×256=1280个视觉token
这种设计带来了几个技术优势:
- 计算效率:固定token数量便于批次处理和内存管理
- 多尺度特征:同时包含局部细节和全局上下文信息
- 长度可控:视觉token数量固定为1280,留出足够空间给文本token
对于非正方形图像(如448×896),项目采用先resize再裁剪的方式,虽然可能引入一定的形变,但保证了处理流程的一致性。开发者建议可以将序列长度配置为4096以适应更复杂的多模态任务。
工程实践建议
基于Monkey项目的这些技术特点,在实际应用中可以考虑:
- 灵活调整序列长度:根据任务复杂度在2048和4096之间选择
- 自定义视觉处理:对于特定长宽比的图像,可调整resize策略减少形变
- 渐进式解冻:在后期微调阶段可逐步解冻部分LLM层提升性能
- 混合精度训练:结合冻结策略可进一步优化训练效率
这些技术决策共同构成了Monkey项目高效多模态微调的基础,平衡了模型性能与计算成本之间的关系。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896