Monkey项目中LLM模块冻结与图像处理策略解析
2025-07-08 00:49:33作者:邵娇湘
冻结LLM模块的技术实现
在Monkey项目的多任务微调过程中,开发者需要冻结大型语言模型(LLM)的大部分参数,只保留LoRA(低秩适应)和Resampler模块可训练。这一技术决策主要基于以下考虑:
- 计算效率:冻结LLM主干可以显著减少训练时的显存占用和计算量
 - 防止灾难性遗忘:保持预训练语言模型的核心能力不被微调过程破坏
 - 参数高效微调:通过LoRA等轻量级适配器实现模型定制化
 
实现代码核心逻辑如下:
# 启用所有LoRA参数
for k,v in model.named_parameters():
    if "lora" in k:
        v.requires_grad_(True)
# 冻结LLM主干
if training_args.fix_llm and hasattr(model,'transformer') and hasattr(model.transformer,'h'):
    model.transformer.h.requires_grad_(False)  # 冻结所有transformer层
    model.transformer.wte.requires_grad_(False)  # 冻结词嵌入层
    model.transformer.ln_f.requires_grad_(False)  # 冻结最终层归一化
    model.lm_head.requires_grad_(False)  # 冻结语言模型头部
值得注意的是,项目中保留了注意力机制中的关键投影层(c_attn, attn.c_proj)和FFN层(w1, w2)的可训练性,这可能是为了保持模型一定的自适应能力。
视觉输入处理策略
Monkey项目对视觉输入采用了独特的处理方式:
- 统一分辨率:所有输入图像都会被resize到896×896的固定尺寸
 - 分块处理:处理后的图像被划分为2×2的网格(共4个patch)加上全局图像(1个patch)
 - Token分配:每个图像patch被编码为256个token,总计(2×2+1)×256=1280个视觉token
 
这种设计带来了几个技术优势:
- 计算效率:固定token数量便于批次处理和内存管理
 - 多尺度特征:同时包含局部细节和全局上下文信息
 - 长度可控:视觉token数量固定为1280,留出足够空间给文本token
 
对于非正方形图像(如448×896),项目采用先resize再裁剪的方式,虽然可能引入一定的形变,但保证了处理流程的一致性。开发者建议可以将序列长度配置为4096以适应更复杂的多模态任务。
工程实践建议
基于Monkey项目的这些技术特点,在实际应用中可以考虑:
- 灵活调整序列长度:根据任务复杂度在2048和4096之间选择
 - 自定义视觉处理:对于特定长宽比的图像,可调整resize策略减少形变
 - 渐进式解冻:在后期微调阶段可逐步解冻部分LLM层提升性能
 - 混合精度训练:结合冻结策略可进一步优化训练效率
 
这些技术决策共同构成了Monkey项目高效多模态微调的基础,平衡了模型性能与计算成本之间的关系。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443