Monkey项目中LLM模块冻结与图像处理策略解析
2025-07-08 18:01:50作者:邵娇湘
冻结LLM模块的技术实现
在Monkey项目的多任务微调过程中,开发者需要冻结大型语言模型(LLM)的大部分参数,只保留LoRA(低秩适应)和Resampler模块可训练。这一技术决策主要基于以下考虑:
- 计算效率:冻结LLM主干可以显著减少训练时的显存占用和计算量
- 防止灾难性遗忘:保持预训练语言模型的核心能力不被微调过程破坏
- 参数高效微调:通过LoRA等轻量级适配器实现模型定制化
实现代码核心逻辑如下:
# 启用所有LoRA参数
for k,v in model.named_parameters():
if "lora" in k:
v.requires_grad_(True)
# 冻结LLM主干
if training_args.fix_llm and hasattr(model,'transformer') and hasattr(model.transformer,'h'):
model.transformer.h.requires_grad_(False) # 冻结所有transformer层
model.transformer.wte.requires_grad_(False) # 冻结词嵌入层
model.transformer.ln_f.requires_grad_(False) # 冻结最终层归一化
model.lm_head.requires_grad_(False) # 冻结语言模型头部
值得注意的是,项目中保留了注意力机制中的关键投影层(c_attn, attn.c_proj)和FFN层(w1, w2)的可训练性,这可能是为了保持模型一定的自适应能力。
视觉输入处理策略
Monkey项目对视觉输入采用了独特的处理方式:
- 统一分辨率:所有输入图像都会被resize到896×896的固定尺寸
- 分块处理:处理后的图像被划分为2×2的网格(共4个patch)加上全局图像(1个patch)
- Token分配:每个图像patch被编码为256个token,总计(2×2+1)×256=1280个视觉token
这种设计带来了几个技术优势:
- 计算效率:固定token数量便于批次处理和内存管理
- 多尺度特征:同时包含局部细节和全局上下文信息
- 长度可控:视觉token数量固定为1280,留出足够空间给文本token
对于非正方形图像(如448×896),项目采用先resize再裁剪的方式,虽然可能引入一定的形变,但保证了处理流程的一致性。开发者建议可以将序列长度配置为4096以适应更复杂的多模态任务。
工程实践建议
基于Monkey项目的这些技术特点,在实际应用中可以考虑:
- 灵活调整序列长度:根据任务复杂度在2048和4096之间选择
- 自定义视觉处理:对于特定长宽比的图像,可调整resize策略减少形变
- 渐进式解冻:在后期微调阶段可逐步解冻部分LLM层提升性能
- 混合精度训练:结合冻结策略可进一步优化训练效率
这些技术决策共同构成了Monkey项目高效多模态微调的基础,平衡了模型性能与计算成本之间的关系。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882