RGBD GS-ICP SLAM 项目教程
2024-09-25 18:46:23作者:伍希望
1. 项目介绍
RGBD GS-ICP SLAM 是一个基于 Generalized Iterative Closest Point (G-ICP) 和 3D Gaussian Splatting 的密集表示 SLAM 方法。该项目旨在通过融合 G-ICP 和 3D Gaussian Splatting 技术,实现高精度的实时定位与地图构建。该方法特别适用于 RGBD 相机采集的数据,能够在复杂环境中提供稳定的 SLAM 解决方案。
2. 项目快速启动
环境准备
首先,确保你的系统已经安装了以下依赖:
- Python 3.9
- PyTorch 2.0.0
- TorchVision 0.15.0
- Torchaudio 2.0.0
- PyTorch CUDA 11.8
你可以使用 Conda 来创建和管理虚拟环境:
conda create -n gsicpslam python==3.9
conda activate gsicpslam
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
安装项目依赖
克隆项目仓库并安装所需的子模块:
git clone https://github.com/Lab-of-AI-and-Robotics/GS_ICP_SLAM.git
cd GS_ICP_SLAM
pip install -r requirements.txt
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
cd submodules/fast_gicp
mkdir build
cd build
cmake ..
make
cd ..
python setup.py install --user
数据准备
项目支持 Replica 和 TUM-RGBD 数据集。你可以通过以下命令下载数据集:
# 下载 Replica 数据集
bash download_replica.sh
# 下载 TUM-RGBD 数据集
bash download_tum.sh
运行项目
在准备好数据集后,你可以运行以下命令来启动 SLAM 系统:
# 使用 Replica 数据集
bash replica.sh
# 使用 TUM-RGBD 数据集
bash tum.sh
3. 应用案例和最佳实践
应用案例
RGBD GS-ICP SLAM 适用于多种应用场景,包括但不限于:
- 室内导航与定位
- 机器人自主导航
- 增强现实(AR)中的环境重建
最佳实践
- 数据预处理:确保输入的 RGBD 数据质量良好,避免过曝或欠曝的情况。
- 参数调优:根据具体应用场景调整 G-ICP 和 3D Gaussian Splatting 的参数,以获得最佳的 SLAM 效果。
- 实时性能优化:在资源受限的设备上运行时,可以考虑降低帧率或使用更高效的算法实现。
4. 典型生态项目
相关项目
- SplaTAM: 一个基于 3D Gaussian Splatting 的 SLAM 项目,提供了丰富的工具和库,用于处理和可视化 3D 数据。
- Fast-GICP: 一个高效的 G-ICP 实现,适用于实时应用场景。
这些项目可以与 RGBD GS-ICP SLAM 结合使用,进一步提升 SLAM 系统的性能和功能。
通过以上步骤,你可以快速启动并使用 RGBD GS-ICP SLAM 项目,实现高精度的实时定位与地图构建。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19