RGBD GS-ICP SLAM 项目教程
2024-09-25 16:19:15作者:伍希望
1. 项目介绍
RGBD GS-ICP SLAM 是一个基于 Generalized Iterative Closest Point (G-ICP) 和 3D Gaussian Splatting 的密集表示 SLAM 方法。该项目旨在通过融合 G-ICP 和 3D Gaussian Splatting 技术,实现高精度的实时定位与地图构建。该方法特别适用于 RGBD 相机采集的数据,能够在复杂环境中提供稳定的 SLAM 解决方案。
2. 项目快速启动
环境准备
首先,确保你的系统已经安装了以下依赖:
- Python 3.9
- PyTorch 2.0.0
- TorchVision 0.15.0
- Torchaudio 2.0.0
- PyTorch CUDA 11.8
你可以使用 Conda 来创建和管理虚拟环境:
conda create -n gsicpslam python==3.9
conda activate gsicpslam
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
安装项目依赖
克隆项目仓库并安装所需的子模块:
git clone https://github.com/Lab-of-AI-and-Robotics/GS_ICP_SLAM.git
cd GS_ICP_SLAM
pip install -r requirements.txt
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
cd submodules/fast_gicp
mkdir build
cd build
cmake ..
make
cd ..
python setup.py install --user
数据准备
项目支持 Replica 和 TUM-RGBD 数据集。你可以通过以下命令下载数据集:
# 下载 Replica 数据集
bash download_replica.sh
# 下载 TUM-RGBD 数据集
bash download_tum.sh
运行项目
在准备好数据集后,你可以运行以下命令来启动 SLAM 系统:
# 使用 Replica 数据集
bash replica.sh
# 使用 TUM-RGBD 数据集
bash tum.sh
3. 应用案例和最佳实践
应用案例
RGBD GS-ICP SLAM 适用于多种应用场景,包括但不限于:
- 室内导航与定位
- 机器人自主导航
- 增强现实(AR)中的环境重建
最佳实践
- 数据预处理:确保输入的 RGBD 数据质量良好,避免过曝或欠曝的情况。
- 参数调优:根据具体应用场景调整 G-ICP 和 3D Gaussian Splatting 的参数,以获得最佳的 SLAM 效果。
- 实时性能优化:在资源受限的设备上运行时,可以考虑降低帧率或使用更高效的算法实现。
4. 典型生态项目
相关项目
- SplaTAM: 一个基于 3D Gaussian Splatting 的 SLAM 项目,提供了丰富的工具和库,用于处理和可视化 3D 数据。
- Fast-GICP: 一个高效的 G-ICP 实现,适用于实时应用场景。
这些项目可以与 RGBD GS-ICP SLAM 结合使用,进一步提升 SLAM 系统的性能和功能。
通过以上步骤,你可以快速启动并使用 RGBD GS-ICP SLAM 项目,实现高精度的实时定位与地图构建。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
282
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
224
303
Ascend Extension for PyTorch
Python
109
139
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
170
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
304
40