RGBD GS-ICP SLAM 项目教程
2024-09-25 11:37:58作者:伍希望
1. 项目介绍
RGBD GS-ICP SLAM 是一个基于 Generalized Iterative Closest Point (G-ICP) 和 3D Gaussian Splatting 的密集表示 SLAM 方法。该项目旨在通过融合 G-ICP 和 3D Gaussian Splatting 技术,实现高精度的实时定位与地图构建。该方法特别适用于 RGBD 相机采集的数据,能够在复杂环境中提供稳定的 SLAM 解决方案。
2. 项目快速启动
环境准备
首先,确保你的系统已经安装了以下依赖:
- Python 3.9
- PyTorch 2.0.0
- TorchVision 0.15.0
- Torchaudio 2.0.0
- PyTorch CUDA 11.8
你可以使用 Conda 来创建和管理虚拟环境:
conda create -n gsicpslam python==3.9
conda activate gsicpslam
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia
安装项目依赖
克隆项目仓库并安装所需的子模块:
git clone https://github.com/Lab-of-AI-and-Robotics/GS_ICP_SLAM.git
cd GS_ICP_SLAM
pip install -r requirements.txt
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
cd submodules/fast_gicp
mkdir build
cd build
cmake ..
make
cd ..
python setup.py install --user
数据准备
项目支持 Replica 和 TUM-RGBD 数据集。你可以通过以下命令下载数据集:
# 下载 Replica 数据集
bash download_replica.sh
# 下载 TUM-RGBD 数据集
bash download_tum.sh
运行项目
在准备好数据集后,你可以运行以下命令来启动 SLAM 系统:
# 使用 Replica 数据集
bash replica.sh
# 使用 TUM-RGBD 数据集
bash tum.sh
3. 应用案例和最佳实践
应用案例
RGBD GS-ICP SLAM 适用于多种应用场景,包括但不限于:
- 室内导航与定位
- 机器人自主导航
- 增强现实(AR)中的环境重建
最佳实践
- 数据预处理:确保输入的 RGBD 数据质量良好,避免过曝或欠曝的情况。
- 参数调优:根据具体应用场景调整 G-ICP 和 3D Gaussian Splatting 的参数,以获得最佳的 SLAM 效果。
- 实时性能优化:在资源受限的设备上运行时,可以考虑降低帧率或使用更高效的算法实现。
4. 典型生态项目
相关项目
- SplaTAM: 一个基于 3D Gaussian Splatting 的 SLAM 项目,提供了丰富的工具和库,用于处理和可视化 3D 数据。
- Fast-GICP: 一个高效的 G-ICP 实现,适用于实时应用场景。
这些项目可以与 RGBD GS-ICP SLAM 结合使用,进一步提升 SLAM 系统的性能和功能。
通过以上步骤,你可以快速启动并使用 RGBD GS-ICP SLAM 项目,实现高精度的实时定位与地图构建。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217