AffNet 项目使用教程
2024-09-19 04:40:18作者:冯爽妲Honey
1. 项目目录结构及介绍
AffNet 项目的目录结构如下:
affnet/
├── convertJIT/
├── examples/
├── imgsimgs/
├── pretrained/
├── test-graf/
├── HandCraftedModules.py
├── HardNet++.pth
├── HardNet.py
├── HardTFeat.pth
├── LAF.py
├── LICENSE
├── Losses.py
├── OnePassSIR.py
├── README.md
├── ReprojectionStuff.py
├── SparseImgRepresenter.py
├── Utils.py
├── architectures.py
├── augmentation.py
├── dataset.py
├── gen_ds.py
├── pytorch_sift.py
├── run_me.sh
├── train_AffNet_test_on_graffity.py
├── train_OriNet_test_on_graffity.py
目录结构介绍
- convertJIT/: 包含用于转换 JIT 模型的文件。
- examples/: 包含项目的示例代码和脚本。
- imgsimgs/: 包含项目使用的图像文件。
- pretrained/: 包含预训练模型的权重文件。
- test-graf/: 包含用于测试的 Graffiti 数据集。
- HandCraftedModules.py: 手工制作的模块代码。
- HardNet++.pth: HardNet++ 模型的预训练权重。
- HardNet.py: HardNet 模型的实现代码。
- HardTFeat.pth: HardTFeat 模型的预训练权重。
- LAF.py: 局部仿射框架(Local Affine Frame)的实现代码。
- LICENSE: 项目的开源许可证文件。
- Losses.py: 损失函数的实现代码。
- OnePassSIR.py: 单次图像表示(One Pass SIR)的实现代码。
- README.md: 项目的说明文档。
- ReprojectionStuff.py: 重投影相关功能的实现代码。
- SparseImgRepresenter.py: 稀疏图像表示的实现代码。
- Utils.py: 项目中使用的实用工具函数。
- architectures.py: 模型架构的实现代码。
- augmentation.py: 数据增强的实现代码。
- dataset.py: 数据集处理的实现代码。
- gen_ds.py: 生成数据集的脚本。
- pytorch_sift.py: PyTorch 版本的 SIFT 实现。
- run_me.sh: 项目的启动脚本。
- train_AffNet_test_on_graffity.py: 在 Graffiti 数据集上训练 AffNet 模型的脚本。
- train_OriNet_test_on_graffity.py: 在 Graffiti 数据集上训练 OriNet 模型的脚本。
2. 项目启动文件介绍
run_me.sh
run_me.sh
是 AffNet 项目的启动脚本。该脚本用于执行项目的初始化、数据集下载和模型训练等操作。使用该脚本可以快速启动项目并进行相关实验。
使用方法
bash run_me.sh
主要功能
- 下载数据集
- 初始化项目环境
- 启动模型训练
3. 项目配置文件介绍
README.md
README.md
是 AffNet 项目的配置文件和说明文档。该文件包含了项目的详细介绍、安装步骤、使用方法以及常见问题解答等内容。
主要内容
- 项目介绍: 对 AffNet 项目的背景、目标和主要功能进行介绍。
- 安装步骤: 详细说明如何在本地环境中安装和配置 AffNet 项目。
- 使用方法: 提供项目的使用示例和操作指南。
- 常见问题解答: 列出用户在使用过程中可能遇到的问题及其解决方案。
使用方法
直接打开 README.md
文件即可查看项目的详细配置和使用说明。
cat README.md
通过以上步骤,您可以快速了解 AffNet 项目的目录结构、启动文件和配置文件,并开始使用该项目进行相关实验和开发。
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4