AffNet 项目使用教程
2024-09-19 23:20:34作者:冯爽妲Honey
1. 项目目录结构及介绍
AffNet 项目的目录结构如下:
affnet/
├── convertJIT/
├── examples/
├── imgsimgs/
├── pretrained/
├── test-graf/
├── HandCraftedModules.py
├── HardNet++.pth
├── HardNet.py
├── HardTFeat.pth
├── LAF.py
├── LICENSE
├── Losses.py
├── OnePassSIR.py
├── README.md
├── ReprojectionStuff.py
├── SparseImgRepresenter.py
├── Utils.py
├── architectures.py
├── augmentation.py
├── dataset.py
├── gen_ds.py
├── pytorch_sift.py
├── run_me.sh
├── train_AffNet_test_on_graffity.py
├── train_OriNet_test_on_graffity.py
目录结构介绍
- convertJIT/: 包含用于转换 JIT 模型的文件。
- examples/: 包含项目的示例代码和脚本。
- imgsimgs/: 包含项目使用的图像文件。
- pretrained/: 包含预训练模型的权重文件。
- test-graf/: 包含用于测试的 Graffiti 数据集。
- HandCraftedModules.py: 手工制作的模块代码。
- HardNet++.pth: HardNet++ 模型的预训练权重。
- HardNet.py: HardNet 模型的实现代码。
- HardTFeat.pth: HardTFeat 模型的预训练权重。
- LAF.py: 局部仿射框架(Local Affine Frame)的实现代码。
- LICENSE: 项目的开源许可证文件。
- Losses.py: 损失函数的实现代码。
- OnePassSIR.py: 单次图像表示(One Pass SIR)的实现代码。
- README.md: 项目的说明文档。
- ReprojectionStuff.py: 重投影相关功能的实现代码。
- SparseImgRepresenter.py: 稀疏图像表示的实现代码。
- Utils.py: 项目中使用的实用工具函数。
- architectures.py: 模型架构的实现代码。
- augmentation.py: 数据增强的实现代码。
- dataset.py: 数据集处理的实现代码。
- gen_ds.py: 生成数据集的脚本。
- pytorch_sift.py: PyTorch 版本的 SIFT 实现。
- run_me.sh: 项目的启动脚本。
- train_AffNet_test_on_graffity.py: 在 Graffiti 数据集上训练 AffNet 模型的脚本。
- train_OriNet_test_on_graffity.py: 在 Graffiti 数据集上训练 OriNet 模型的脚本。
2. 项目启动文件介绍
run_me.sh
run_me.sh 是 AffNet 项目的启动脚本。该脚本用于执行项目的初始化、数据集下载和模型训练等操作。使用该脚本可以快速启动项目并进行相关实验。
使用方法
bash run_me.sh
主要功能
- 下载数据集
- 初始化项目环境
- 启动模型训练
3. 项目配置文件介绍
README.md
README.md 是 AffNet 项目的配置文件和说明文档。该文件包含了项目的详细介绍、安装步骤、使用方法以及常见问题解答等内容。
主要内容
- 项目介绍: 对 AffNet 项目的背景、目标和主要功能进行介绍。
- 安装步骤: 详细说明如何在本地环境中安装和配置 AffNet 项目。
- 使用方法: 提供项目的使用示例和操作指南。
- 常见问题解答: 列出用户在使用过程中可能遇到的问题及其解决方案。
使用方法
直接打开 README.md 文件即可查看项目的详细配置和使用说明。
cat README.md
通过以上步骤,您可以快速了解 AffNet 项目的目录结构、启动文件和配置文件,并开始使用该项目进行相关实验和开发。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K