Apache Kyuubi项目中Spark Hive连接器读取TPCDS Parquet表的问题解析
背景介绍
Apache Kyuubi是一个开源的分布式SQL引擎,它提供了Spark SQL的JDBC接口服务。在Kyuubi项目中,Spark Hive连接器(KSCH)是一个重要组件,用于实现与Hive数据仓库的集成。近期在使用过程中发现,当尝试通过KSCH读取TPCDS基准测试生成的Parquet格式表时,会出现数据读取失败的问题。
问题现象
用户在使用Spark生成TPCDS测试数据集后,通过Kyuubi的Spark Hive连接器查询catalog_sales和store_returns等表时,遇到了Parquet解码异常。错误信息显示系统无法读取特定位置的Parquet数据块,并抛出UnsupportedOperationException异常。
根本原因分析
经过深入分析,这个问题源于Kyuubi Spark Hive连接器的实现机制:
-
Hive Parquet Reader限制:KSCH目前使用Hive SerDe来读写Hive表,其底层实现基于Hive 2.3.9版本。这个版本的Hive Parquet reader存在一些已知限制:
- 不支持向量化读取,性能较低
- 无法正确处理新版本的Parquet逻辑类型
- 对某些Parquet格式特性的兼容性不足
-
Parquet格式兼容性:Spark默认生成的Parquet文件使用了较新的格式规范,而Hive 2.3.9的Parquet reader无法完全兼容这些新特性,导致解码失败。
解决方案
针对这个问题,目前有以下解决方案:
-
启用Legacy格式:在生成TPCDS数据时,设置Spark配置项:
spark.sql.parquet.writeLegacyFormat=true这会强制Spark使用与Hive 2.3.9兼容的旧版Parquet格式写入数据。
-
未来改进方向:
- 考虑支持
spark.sql.hive.convertMetastoreParquet配置项 - 或者定义专门的配置项来将Hive Parquet表读取转换为Spark DataSource表读取
- 升级底层Hive版本以支持新特性
- 考虑支持
技术建议
对于生产环境中的使用,建议:
- 如果必须使用KSCH连接器,目前应坚持使用Legacy格式
- 对于性能敏感场景,可以考虑等待未来版本对DataSource读取方式的支持
- 关注Kyuubi项目的更新,及时了解对新型Parquet格式的支持进展
总结
这个问题反映了大数据生态系统中不同组件间格式兼容性的挑战。Kyuubi团队已经意识到这个问题,并计划在未来版本中提供更灵活的解决方案。目前用户可以通过配置调整来规避问题,同时可以期待未来版本对新型Parquet格式的完整支持。
对于需要同时使用Spark生成数据和Hive读取数据的场景,建议仔细规划数据格式和工具链的选择,确保各组件间的兼容性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00