Apache Kyuubi项目中Spark Hive连接器读取TPCDS Parquet表的问题解析
背景介绍
Apache Kyuubi是一个开源的分布式SQL引擎,它提供了Spark SQL的JDBC接口服务。在Kyuubi项目中,Spark Hive连接器(KSCH)是一个重要组件,用于实现与Hive数据仓库的集成。近期在使用过程中发现,当尝试通过KSCH读取TPCDS基准测试生成的Parquet格式表时,会出现数据读取失败的问题。
问题现象
用户在使用Spark生成TPCDS测试数据集后,通过Kyuubi的Spark Hive连接器查询catalog_sales和store_returns等表时,遇到了Parquet解码异常。错误信息显示系统无法读取特定位置的Parquet数据块,并抛出UnsupportedOperationException异常。
根本原因分析
经过深入分析,这个问题源于Kyuubi Spark Hive连接器的实现机制:
-
Hive Parquet Reader限制:KSCH目前使用Hive SerDe来读写Hive表,其底层实现基于Hive 2.3.9版本。这个版本的Hive Parquet reader存在一些已知限制:
- 不支持向量化读取,性能较低
- 无法正确处理新版本的Parquet逻辑类型
- 对某些Parquet格式特性的兼容性不足
-
Parquet格式兼容性:Spark默认生成的Parquet文件使用了较新的格式规范,而Hive 2.3.9的Parquet reader无法完全兼容这些新特性,导致解码失败。
解决方案
针对这个问题,目前有以下解决方案:
-
启用Legacy格式:在生成TPCDS数据时,设置Spark配置项:
spark.sql.parquet.writeLegacyFormat=true这会强制Spark使用与Hive 2.3.9兼容的旧版Parquet格式写入数据。
-
未来改进方向:
- 考虑支持
spark.sql.hive.convertMetastoreParquet配置项 - 或者定义专门的配置项来将Hive Parquet表读取转换为Spark DataSource表读取
- 升级底层Hive版本以支持新特性
- 考虑支持
技术建议
对于生产环境中的使用,建议:
- 如果必须使用KSCH连接器,目前应坚持使用Legacy格式
- 对于性能敏感场景,可以考虑等待未来版本对DataSource读取方式的支持
- 关注Kyuubi项目的更新,及时了解对新型Parquet格式的支持进展
总结
这个问题反映了大数据生态系统中不同组件间格式兼容性的挑战。Kyuubi团队已经意识到这个问题,并计划在未来版本中提供更灵活的解决方案。目前用户可以通过配置调整来规避问题,同时可以期待未来版本对新型Parquet格式的完整支持。
对于需要同时使用Spark生成数据和Hive读取数据的场景,建议仔细规划数据格式和工具链的选择,确保各组件间的兼容性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00