Apache Kyuubi项目中Spark Hive连接器读取TPCDS Parquet表的兼容性问题分析
背景介绍
Apache Kyuubi是一个分布式SQL引擎服务,提供了JDBC接口来访问Spark SQL的能力。在实际使用过程中,用户发现通过Kyuubi的Spark Hive连接器读取TPCDS测试数据集生成的Parquet格式表时遇到了兼容性问题。
问题现象
当用户使用Kyuubi Spark Hive连接器查询TPCDS数据集中的表(如catalog_sales和store_returns)时,系统抛出了ParquetDecodingException异常。具体表现为:
- 对于catalog_sales表,报错显示无法读取Parquet文件中的值,底层原因是Hive的Parquet读取器不支持PlainIntegerDictionary类型的字典解码
- 对于store_returns表,报错显示无法读取特定位置的值,原因是Hive的ETypeConverter实现不支持特定的类型转换操作
根本原因分析
经过深入分析,这个问题源于以下几个技术层面的限制:
-
Hive Parquet读取器的局限性:Kyuubi Spark Hive连接器目前使用Hive 2.3.9的SerDe实现来读写Hive表,其内置的Parquet读取器对新型Parquet格式的支持有限
-
字典编码兼容性问题:Spark生成的Parquet文件使用了较新的字典编码格式,而Hive的老版本Parquet读取器无法正确处理这些编码
-
类型系统差异:Spark和Hive在类型系统处理上存在差异,特别是在处理复杂类型和逻辑类型时
解决方案
目前可行的解决方案是在生成TPCDS数据时启用Spark的旧版Parquet格式支持:
SET spark.sql.parquet.writeLegacyFormat=true;
这个配置会让Spark使用与Hive兼容的旧版Parquet格式写入数据,从而避免后续读取时的兼容性问题。
未来改进方向
从技术架构角度看,Kyuubi团队可以考虑以下改进方向:
-
支持
spark.sql.hive.convertMetastoreParquet
配置,允许将Hive Parquet表读取转换为Spark DataSource表读取 -
升级Hive集成版本,以支持更多Parquet新特性
-
提供更灵活的数据源选择机制,让用户可以根据场景选择最优的读取路径
最佳实践建议
对于需要使用Kyuubi处理TPCDS等标准测试集的用户,建议:
-
在数据生成阶段就考虑下游系统的兼容性需求
-
对于性能敏感场景,考虑直接使用Spark原生数据源而非Hive连接器
-
关注Kyuubi的版本更新,及时了解对新型文件格式的支持进展
通过理解这些技术细节和限制,用户可以更好地规划数据架构和选择适当的技术方案。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









