Qiskit量子计算框架中InverseCancellation优化器的控制流处理问题分析
问题背景
在量子电路优化过程中,门操作消减是一项关键技术。Qiskit量子计算框架提供了多种优化器,其中InverseCancellation和CXCancellation都是用于消除冗余量子门操作的重要工具。近期开发团队决定用更通用的InverseCancellation替代CXCancellation作为预设的优化流程,但在实际使用中发现了一个关键差异:InverseCancellation无法正确处理包含控制流(control flow)的量子电路块。
技术细节分析
控制流是量子编程中的重要概念,允许根据经典条件执行不同的量子操作分支。在Qiskit中,这通过if_else等结构实现。当量子电路包含这类控制结构时,优化器需要能够递归地处理每个分支中的量子门操作。
测试案例显示:
- 创建一个包含CX门对和控制流结构的量子电路
- 应用
InverseCancellation优化器后,只有主电路中的CX门对被消除,控制流块内的CX门对保持不变 - 相比之下,
CXCancellation能够正确处理控制流块内的CX门消减
根本原因
InverseCancellation优化器在设计时没有实现对控制流结构的递归处理能力。而CXCancellation则内置了这一功能,能够深入控制流块内部进行门操作优化。这种差异导致在迁移到更通用的InverseCancellation时,出现了功能退化。
解决方案
技术团队已经确认解决方案非常简单直接:只需要为InverseCancellation添加@control_flow.trivial_recurse装饰器即可。这个装饰器会指示优化器递归处理所有控制流块,保持与CXCancellation相同的行为模式。
对用户的影响
对于使用Qiskit进行量子电路开发的用户,特别是那些在算法中大量使用控制流结构的开发者,需要注意:
- 当前版本的
InverseCancellation可能无法完全优化控制流块内的门操作 - 如果需要完整优化,可以暂时继续使用
CXCancellation - 关注框架更新,该问题预计会在未来版本中修复
技术展望
这个问题反映了量子编译器设计中一个重要的工程考量:当引入新的通用优化器时,需要确保其功能覆盖所有特殊场景。控制流处理是量子编程中日益重要的特性,未来所有优化器都需要具备完善的递归处理能力。
随着量子算法复杂度的提升,控制流结构的使用会越来越普遍。Qiskit团队对这类问题的快速响应也展示了框架持续改进的能力,为开发者提供了更可靠的量子编程工具链。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01