探索智能调度:通过深度强化学习进行工作中心分配
2024-05-24 02:31:49作者:卓炯娓
在这个数字化的时代,优化生产流程以提高效率和利润已经成为企业不可忽视的任务。为此,我们很高兴向您推荐一个创新的开源项目——"Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning"(L2D)。这个项目利用深度强化学习解决复杂的工作中心调度问题,为制造业带来了智能化的解决方案。
项目介绍
L2D 是一项由 NeurIPS 2020 大会发表的研究成果,它提出了一种新颖的算法,能够自主学习如何在作业车间调度中有效地分配任务。项目提供了完整的 PyTorch 实现,使得研究人员和开发者可以轻松地复现实验结果,或者在其基础上进行进一步的探索和应用开发。
项目技术分析
该项目基于深度强化学习,使用神经网络模型作为智能代理,通过与环境交互来学习最优的调度策略。在传统的作业车间调度问题上,L2D 能够处理复杂的约束条件,并动态地调整任务分配,以达到最小化完工时间和最大化资源利用率的目标。这种方法克服了传统规则基方法的局限性,能够在不确定性和变化性环境中自我适应。
应用场景
L2D 的潜在应用非常广泛,包括但不限于:
- 制造业:在汽车、电子设备等制造业中,实时调度和任务分配是关键挑战,L2D 可以帮助优化生产线的运行。
 - 物流配送:在包裹分拣或货物运输中,L2D 可用于智能规划配送路径,减少等待时间,提高运输效率。
 - 数据中心管理:在云计算环境中,它可以帮助合理分配计算资源,降低能耗并提升服务响应速度。
 
项目特点
- 灵活性:L2D 使用深度强化学习,能应对多种复杂的生产环境和实时变化。
 - 高效性:经过训练的模型能够快速生成有效的调度决策,减少了因人为因素带来的延误。
 - 可扩展性:该框架设计简洁,易于与其他系统集成,适用于不同规模的企业。
 - 可复现性:提供详细的代码和文档,用户可以轻松复现论文中的实验结果。
 
要体验 L2D 的强大功能,只需安装 PyTorch 和 Gym 等依赖库,并按照提供的 Docker 容器指南运行项目即可。现在就加入这个旅程,开启您的智能调度新篇章!
[\[GitHub仓库链接\]](https://github.com/your-github-repo-url)
引用本文的研究时,请使用以下 BibTeX 格式:
@inproceedings{NEURIPS2020_11958dfe,
  author    = {Cong Zhang and Wen Song and Zhiguang Cao and Jie Zhang and Puay Siew Tan and Xu Chi},
  booktitle = {Advances in Neural Information Processing Systems},
  editor    = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
  pages     = {1621--1632},
  publisher = {Curran Associates, Inc.},
  title     = {Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning},
  url       = {https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf},
  volume    = {33},
  year      = {20
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446