探索智能调度:通过深度强化学习进行工作中心分配
2024-05-24 02:31:49作者:卓炯娓
在这个数字化的时代,优化生产流程以提高效率和利润已经成为企业不可忽视的任务。为此,我们很高兴向您推荐一个创新的开源项目——"Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning"(L2D)。这个项目利用深度强化学习解决复杂的工作中心调度问题,为制造业带来了智能化的解决方案。
项目介绍
L2D 是一项由 NeurIPS 2020 大会发表的研究成果,它提出了一种新颖的算法,能够自主学习如何在作业车间调度中有效地分配任务。项目提供了完整的 PyTorch 实现,使得研究人员和开发者可以轻松地复现实验结果,或者在其基础上进行进一步的探索和应用开发。
项目技术分析
该项目基于深度强化学习,使用神经网络模型作为智能代理,通过与环境交互来学习最优的调度策略。在传统的作业车间调度问题上,L2D 能够处理复杂的约束条件,并动态地调整任务分配,以达到最小化完工时间和最大化资源利用率的目标。这种方法克服了传统规则基方法的局限性,能够在不确定性和变化性环境中自我适应。
应用场景
L2D 的潜在应用非常广泛,包括但不限于:
- 制造业:在汽车、电子设备等制造业中,实时调度和任务分配是关键挑战,L2D 可以帮助优化生产线的运行。
- 物流配送:在包裹分拣或货物运输中,L2D 可用于智能规划配送路径,减少等待时间,提高运输效率。
- 数据中心管理:在云计算环境中,它可以帮助合理分配计算资源,降低能耗并提升服务响应速度。
项目特点
- 灵活性:L2D 使用深度强化学习,能应对多种复杂的生产环境和实时变化。
- 高效性:经过训练的模型能够快速生成有效的调度决策,减少了因人为因素带来的延误。
- 可扩展性:该框架设计简洁,易于与其他系统集成,适用于不同规模的企业。
- 可复现性:提供详细的代码和文档,用户可以轻松复现论文中的实验结果。
要体验 L2D 的强大功能,只需安装 PyTorch 和 Gym 等依赖库,并按照提供的 Docker 容器指南运行项目即可。现在就加入这个旅程,开启您的智能调度新篇章!
[\[GitHub仓库链接\]](https://github.com/your-github-repo-url)
引用本文的研究时,请使用以下 BibTeX 格式:
@inproceedings{NEURIPS2020_11958dfe,
author = {Cong Zhang and Wen Song and Zhiguang Cao and Jie Zhang and Puay Siew Tan and Xu Chi},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {1621--1632},
publisher = {Curran Associates, Inc.},
title = {Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning},
url = {https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf},
volume = {33},
year = {20
热门项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
53
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
64
16
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27