探索智能调度:通过深度强化学习进行工作中心分配
2024-05-24 02:31:49作者:卓炯娓
在这个数字化的时代,优化生产流程以提高效率和利润已经成为企业不可忽视的任务。为此,我们很高兴向您推荐一个创新的开源项目——"Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning"(L2D)。这个项目利用深度强化学习解决复杂的工作中心调度问题,为制造业带来了智能化的解决方案。
项目介绍
L2D 是一项由 NeurIPS 2020 大会发表的研究成果,它提出了一种新颖的算法,能够自主学习如何在作业车间调度中有效地分配任务。项目提供了完整的 PyTorch 实现,使得研究人员和开发者可以轻松地复现实验结果,或者在其基础上进行进一步的探索和应用开发。
项目技术分析
该项目基于深度强化学习,使用神经网络模型作为智能代理,通过与环境交互来学习最优的调度策略。在传统的作业车间调度问题上,L2D 能够处理复杂的约束条件,并动态地调整任务分配,以达到最小化完工时间和最大化资源利用率的目标。这种方法克服了传统规则基方法的局限性,能够在不确定性和变化性环境中自我适应。
应用场景
L2D 的潜在应用非常广泛,包括但不限于:
- 制造业:在汽车、电子设备等制造业中,实时调度和任务分配是关键挑战,L2D 可以帮助优化生产线的运行。
- 物流配送:在包裹分拣或货物运输中,L2D 可用于智能规划配送路径,减少等待时间,提高运输效率。
- 数据中心管理:在云计算环境中,它可以帮助合理分配计算资源,降低能耗并提升服务响应速度。
项目特点
- 灵活性:L2D 使用深度强化学习,能应对多种复杂的生产环境和实时变化。
- 高效性:经过训练的模型能够快速生成有效的调度决策,减少了因人为因素带来的延误。
- 可扩展性:该框架设计简洁,易于与其他系统集成,适用于不同规模的企业。
- 可复现性:提供详细的代码和文档,用户可以轻松复现论文中的实验结果。
要体验 L2D 的强大功能,只需安装 PyTorch 和 Gym 等依赖库,并按照提供的 Docker 容器指南运行项目即可。现在就加入这个旅程,开启您的智能调度新篇章!
[\[GitHub仓库链接\]](https://github.com/your-github-repo-url)
引用本文的研究时,请使用以下 BibTeX 格式:
@inproceedings{NEURIPS2020_11958dfe,
author = {Cong Zhang and Wen Song and Zhiguang Cao and Jie Zhang and Puay Siew Tan and Xu Chi},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {1621--1632},
publisher = {Curran Associates, Inc.},
title = {Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning},
url = {https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf},
volume = {33},
year = {20
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
Ascend Extension for PyTorch
Python
264
298
暂无简介
Dart
710
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
179
65
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
413
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
422
130