探索智能调度:通过深度强化学习进行工作中心分配
2024-05-24 02:31:49作者:卓炯娓
在这个数字化的时代,优化生产流程以提高效率和利润已经成为企业不可忽视的任务。为此,我们很高兴向您推荐一个创新的开源项目——"Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning"(L2D)。这个项目利用深度强化学习解决复杂的工作中心调度问题,为制造业带来了智能化的解决方案。
项目介绍
L2D 是一项由 NeurIPS 2020 大会发表的研究成果,它提出了一种新颖的算法,能够自主学习如何在作业车间调度中有效地分配任务。项目提供了完整的 PyTorch 实现,使得研究人员和开发者可以轻松地复现实验结果,或者在其基础上进行进一步的探索和应用开发。
项目技术分析
该项目基于深度强化学习,使用神经网络模型作为智能代理,通过与环境交互来学习最优的调度策略。在传统的作业车间调度问题上,L2D 能够处理复杂的约束条件,并动态地调整任务分配,以达到最小化完工时间和最大化资源利用率的目标。这种方法克服了传统规则基方法的局限性,能够在不确定性和变化性环境中自我适应。
应用场景
L2D 的潜在应用非常广泛,包括但不限于:
- 制造业:在汽车、电子设备等制造业中,实时调度和任务分配是关键挑战,L2D 可以帮助优化生产线的运行。
- 物流配送:在包裹分拣或货物运输中,L2D 可用于智能规划配送路径,减少等待时间,提高运输效率。
- 数据中心管理:在云计算环境中,它可以帮助合理分配计算资源,降低能耗并提升服务响应速度。
项目特点
- 灵活性:L2D 使用深度强化学习,能应对多种复杂的生产环境和实时变化。
- 高效性:经过训练的模型能够快速生成有效的调度决策,减少了因人为因素带来的延误。
- 可扩展性:该框架设计简洁,易于与其他系统集成,适用于不同规模的企业。
- 可复现性:提供详细的代码和文档,用户可以轻松复现论文中的实验结果。
要体验 L2D 的强大功能,只需安装 PyTorch 和 Gym 等依赖库,并按照提供的 Docker 容器指南运行项目即可。现在就加入这个旅程,开启您的智能调度新篇章!
[\[GitHub仓库链接\]](https://github.com/your-github-repo-url)
引用本文的研究时,请使用以下 BibTeX 格式:
@inproceedings{NEURIPS2020_11958dfe,
author = {Cong Zhang and Wen Song and Zhiguang Cao and Jie Zhang and Puay Siew Tan and Xu Chi},
booktitle = {Advances in Neural Information Processing Systems},
editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
pages = {1621--1632},
publisher = {Curran Associates, Inc.},
title = {Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning},
url = {https://proceedings.neurips.cc/paper/2020/file/11958dfee29b6709f48a9ba0387a2431-Paper.pdf},
volume = {33},
year = {20
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K