YOLOv10训练过程中KeyError: 'epoch'问题的分析与解决
2025-05-22 18:10:21作者:段琳惟
问题现象
在使用YOLOv10进行模型训练时,特别是当尝试从预训练权重开始训练时,部分用户遇到了一个KeyError异常,错误信息显示为KeyError: 'epoch'。这个问题通常出现在以下场景:
- 使用多GPU训练时
- 尝试从预训练权重(yolov10x.pt等)开始训练
- 通过Python脚本直接调用训练函数
错误堆栈显示,程序在尝试访问检查点(ckpt)字典中的'epoch'键时失败,表明检查点文件结构可能存在问题或程序对检查点的处理逻辑有缺陷。
问题根源
经过分析,这个问题源于Ultralytics框架中的一个潜在缺陷。当使用多GPU训练时,框架内部会尝试自动处理模型恢复(resume)逻辑,即使明确设置了resume=False参数。具体表现为:
- 框架错误地将预训练权重文件视为可恢复的训练检查点
- 尝试从中读取训练元数据(如epoch计数)
- 由于预训练权重文件不包含这些训练元数据字段,导致KeyError异常
解决方案
目前有两种可行的解决方案:
方案一:使用分布式启动命令
通过torch的分布式启动器来运行训练脚本,可以绕过这个问题:
python -m torch.distributed.run --nproc_per_node 4 train.py
其中4应替换为实际使用的GPU数量。这种方法之所以有效,是因为它改变了训练初始化的流程,避免了框架内部错误的检查点恢复逻辑。
方案二:修改训练脚本
对于直接使用Python脚本的情况,可以尝试以下修改:
from ultralytics import YOLOv10
# 明确指定不使用恢复功能
model = YOLOv10('yolov10x.pt', task='detect')
# 训练参数中确保resume=False
results = model.train(
data='coco.yaml',
epochs=120,
imgsz=1280,
device=[0, 1, 2, 3],
batch=16,
close_mosaic=20,
project='coco-1280',
resume=False,
pretrained=True # 明确指定使用预训练权重
)
深入分析
这个问题实际上反映了YOLOv10与其底层框架Ultralytics之间在训练流程处理上的一个小差异。在YOLOv8中,同样的使用方式通常不会出现这个问题,说明在YOLOv10的实现中可能引入了一些变化:
- 检查点处理逻辑变化:YOLOv10可能修改了检查点加载的逻辑,导致对预训练权重和训练中间检查点的区分不够明确
- 分布式训练初始化流程:多GPU训练时的初始化路径可能与单GPU有所不同,导致某些参数未被正确设置
- 预训练权重结构:YOLOv10的预训练权重文件可能缺少某些YOLOv8中存在的元数据字段
最佳实践建议
为了避免类似问题,建议用户:
- 对于多GPU训练,始终使用torch分布式启动器
- 在训练脚本中明确指定
resume=False和pretrained=True参数 - 确保使用的Ultralytics框架版本与YOLOv10要求完全兼容
- 检查预训练权重文件的完整性,确保下载的权重文件没有损坏
总结
YOLOv10训练过程中的KeyError: 'epoch'问题是一个典型的框架使用问题,通过正确的启动方式或参数设置可以轻松解决。这个问题也提醒我们,在使用新发布的模型时,需要关注其与底层框架的兼容性变化,特别是当从旧版本迁移到新版本时。随着YOLOv10的持续发展,这类问题有望在后续版本中得到官方修复。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178