首页
/ 探索性能边界:Java对象映射框架微基准测试

探索性能边界:Java对象映射框架微基准测试

2024-05-23 12:27:57作者:傅爽业Veleda

在多层应用的开发中,我们经常需要在不同的对象模型之间进行转换,例如DTO和实体之间的映射。手动编写这类样板代码既耗时又容易出错。为了解决这个问题,许多Java对象映射框架应运而生,它们旨在简化工作并自动化这一过程。有的通过代码反射(如Dozer),有的采用代码生成(如MapStruct)。

本项目是一个基于JMH——由OpenJDK团队开发的Java微基准测试工具——的基准测试,用于比较9个流行的Java对象映射框架的性能。你可以将这些结果与自定义编写的代码进行对比,以便选择最适合你的项目需求的框架。

映射框架大比拼

以下是参与测试的框架:

应用场景

无论你是要构建一个企业级应用程序,还是维护一个需要高效数据转换的Web服务,这个项目都提供了宝贵的参考信息。你可以在项目中找到如何在不同框架下实现相同功能的例子,并结合性能测试结果,来优化你的选择。

数据模型

测试所使用的数据模型相当基础,源于ModelMapper框架的Comparison类。它包含了Java Bean中常见的组合,比如对象类型和集合。

探索性能边界:Java对象映射框架微基准测试

运行基准测试

前提条件:安装了Maven 3.x和JDK 8或更高版本。

  1. 使用Git克隆此仓库:

    git clone git://github.com/arey/java-object-mapper-benchmark.git
    
  2. 清理并安装项目:

    mvn clean install
    
  3. 运行基准测试:

    java -jar target/benchmarks.jar
    

可选:如果你想只运行特定的映射器测试,例如MapStruct,可以使用:

java -jar target/benchmarks.jar -p type=MapStruct

结果解读

测试度量的是"ops/time",即每秒操作数。时间单位是秒。一般来说,得分越高表示每秒映射的对象越多,性能越好。

最新测试结果

以下是在特定硬件配置上执行的测试结果:

  • 操作系统:macOS High Sierra
  • CPU:3.1 GHz Intel Core i7,双核,L2缓存(每个核心):256 KB,L3缓存:4 MB
  • 内存:16 GB 1867 MHz DDR3
  • JVM:Oracle 1.8.0_74-b02 64位

详细的测试结果图表可在项目主页查看。

文档与致谢

此外,项目还感谢Maven作为构建工具,以及JMH提供的强大基准测试支持。

加入这个项目,一起推动Java映射框架的性能边界,为社区贡献力量!


简而言之,这个开源项目为开发者提供了一个独特的视角,揭示了不同Java对象映射框架在实际操作中的性能差异。无论你是新手还是经验丰富的开发者,都可以从中学到宝贵的知识,优化你的项目决策。立即尝试运行这个基准测试,看看哪个框架最符合你的需求吧!

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
603
114
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
55
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
59
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
44
29
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
77
Ffit-framework
面向全场景的 Java 企业级插件化编程框架,支持聚散部署和共享内存,以一切皆可替换为核心理念,旨在为用户提供一种灵活的服务开发范式。
Java
112
13
yolo-onnx-javayolo-onnx-java
Java开发视觉智能识别项目 纯java 调用 yolo onnx 模型 AI 视频 识别 支持 yolov5 yolov8 yolov7 yolov9 yolov10,yolov11,paddle ,obb,seg ,detection,包含 预处理 和 后处理 。java 目标检测 目标识别,可集成 rtsp rtmp,车牌识别,人脸识别,跌倒识别,打架识别,车牌识别,人脸识别 等
Java
7
0
cjoycjoy
a fast,lightweight and joy web framework
Cangjie
10
2
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
7
0
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
111
25