LiteLLM项目中Anthropic模型成本计算问题的技术分析
2025-05-10 16:58:27作者:龚格成
在开源项目LiteLLM的最新版本(v1.65.4.post1)中,发现了一个与Anthropic模型成本计算相关的重要技术问题。这个问题主要出现在启用了提示缓存(prompt caching)功能时,会导致输入令牌(token)被重复计算,从而使得成本估算出现显著偏差。
问题背景
LiteLLM作为一个大型语言模型(LLM)的统一接口层,提供了对多种模型API的抽象和标准化访问。其中,Anthropic作为重要的模型提供商之一,其Claude系列模型在LiteLLM中得到了良好支持。在实际使用中,当用户启用提示缓存功能时,系统会记录缓存创建过程中消耗的令牌数(cache_creation_input_tokens)。
问题现象
技术分析发现,当前实现中存在一个关键缺陷:系统不仅会将cache_creation_input_tokens作为独立的缓存创建成本计算,还会将其包含在常规的提示令牌(prompt tokens)中进行重复计算。这导致最终的成本计算结果几乎是实际成本的两倍。
例如,在一个实际案例中:
- API返回的用量数据显示:输入令牌3个,缓存创建输入令牌12304个,缓存读取输入令牌0个,输出令牌550个
- LiteLLM计算出的成本为$0.091311
- 而Anthropic计费控制台显示的实际成本仅为$0.05439
技术细节分析
深入代码层面,问题出现在成本计算逻辑中。系统在处理Anthropic API返回的用量数据时,没有正确处理缓存相关令牌与常规提示令牌之间的关系。具体表现为:
- 系统首先将
input_tokens(3)和cache_creation_input_tokens(12304)相加作为总输入令牌(12307) - 然后又将
cache_creation_input_tokens作为独立的缓存创建成本项进行计算 - 这种双重计算导致了最终成本的高估
影响范围
这一问题会影响所有使用以下配置的用户:
- 使用Anthropic模型(特别是Claude 3.7 Sonnet等较新版本)
- 启用了提示缓存功能
- 依赖LiteLLM进行成本计算和监控
解决方案建议
正确的实现应该:
- 区分常规提示令牌和缓存相关令牌的计算
- 避免将缓存创建令牌同时计入常规提示令牌和独立缓存成本项
- 确保总成本计算与Anthropic官方计费逻辑一致
总结
这个问题虽然不会影响模型的实际调用和功能,但对于需要精确成本控制的用户来说至关重要。特别是在大规模使用场景下,这种成本计算偏差可能会造成显著的财务影响。建议使用相关功能的用户关注此问题的修复进展,并在必要时手动验证成本计算结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134