首页
/ LiteLLM项目中Anthropic模型成本计算问题的技术分析

LiteLLM项目中Anthropic模型成本计算问题的技术分析

2025-05-10 20:22:33作者:龚格成

在开源项目LiteLLM的最新版本(v1.65.4.post1)中,发现了一个与Anthropic模型成本计算相关的重要技术问题。这个问题主要出现在启用了提示缓存(prompt caching)功能时,会导致输入令牌(token)被重复计算,从而使得成本估算出现显著偏差。

问题背景

LiteLLM作为一个大型语言模型(LLM)的统一接口层,提供了对多种模型API的抽象和标准化访问。其中,Anthropic作为重要的模型提供商之一,其Claude系列模型在LiteLLM中得到了良好支持。在实际使用中,当用户启用提示缓存功能时,系统会记录缓存创建过程中消耗的令牌数(cache_creation_input_tokens)。

问题现象

技术分析发现,当前实现中存在一个关键缺陷:系统不仅会将cache_creation_input_tokens作为独立的缓存创建成本计算,还会将其包含在常规的提示令牌(prompt tokens)中进行重复计算。这导致最终的成本计算结果几乎是实际成本的两倍。

例如,在一个实际案例中:

  • API返回的用量数据显示:输入令牌3个,缓存创建输入令牌12304个,缓存读取输入令牌0个,输出令牌550个
  • LiteLLM计算出的成本为$0.091311
  • 而Anthropic计费控制台显示的实际成本仅为$0.05439

技术细节分析

深入代码层面,问题出现在成本计算逻辑中。系统在处理Anthropic API返回的用量数据时,没有正确处理缓存相关令牌与常规提示令牌之间的关系。具体表现为:

  1. 系统首先将input_tokens(3)和cache_creation_input_tokens(12304)相加作为总输入令牌(12307)
  2. 然后又将cache_creation_input_tokens作为独立的缓存创建成本项进行计算
  3. 这种双重计算导致了最终成本的高估

影响范围

这一问题会影响所有使用以下配置的用户:

  • 使用Anthropic模型(特别是Claude 3.7 Sonnet等较新版本)
  • 启用了提示缓存功能
  • 依赖LiteLLM进行成本计算和监控

解决方案建议

正确的实现应该:

  1. 区分常规提示令牌和缓存相关令牌的计算
  2. 避免将缓存创建令牌同时计入常规提示令牌和独立缓存成本项
  3. 确保总成本计算与Anthropic官方计费逻辑一致

总结

这个问题虽然不会影响模型的实际调用和功能,但对于需要精确成本控制的用户来说至关重要。特别是在大规模使用场景下,这种成本计算偏差可能会造成显著的财务影响。建议使用相关功能的用户关注此问题的修复进展,并在必要时手动验证成本计算结果。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
23
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.27 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
flutter_flutterflutter_flutter
暂无简介
Dart
526
116
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
586
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
212
288