TensorRT中FP16精度转换导致NaN输出的问题分析与解决方案
问题背景
在深度学习模型部署过程中,将模型从FP32精度转换为FP16精度是常见的优化手段,可以显著提升推理速度并减少显存占用。然而,在使用TensorRT进行FP16精度转换时,开发者可能会遇到模型输出NaN(非数字)的问题。
问题现象
当尝试将一个基于NAFNet架构的模型从FP32转换为FP16精度时,模型在FP32精度下能够产生正确的输出,但在FP16精度下却输出NaN值。通过Polygraphy工具比较ONNX Runtime和TensorRT的输出时,发现TRT-FP16的输出无效。
问题分析
经过深入分析,发现这个问题可能由以下几个原因导致:
-
FP16精度范围限制:FP16的数值范围(约±65504)远小于FP32(约±3.4×10³⁸),在模型计算过程中容易出现数值溢出。
-
特定操作的影响:模型中的CumSum(累积求和)操作特别容易导致数值超出FP16的范围,因为随着求和次数的增加,数值会不断累积增大。
-
TensorRT版本差异:有开发者报告称,在TensorRT 8.5版本中相同的模型可以正常工作,但在10.6和10.7版本中会出现NaN输出,这表明TensorRT内部实现的变化可能影响了FP16的数值稳定性。
解决方案
1. 混合精度策略
通过分析模型结构,可以识别出对数值精度敏感的关键层,并强制这些层保持FP32精度:
import onnx
model_path = 'model.onnx'
model = onnx.load(model_path)
graph = model.graph
matching_layer = []
for node in graph.node:
for output in node.output:
if 'sca' in output: # 识别所有包含'sca'的层
matching_layer.append(node)
layer_prec_str = ''
for layer in matching_layer:
layer_prec_str += layer.name + ':fp32,'
layer_prec_str = layer_prec_str.removesuffix(',')
然后使用trtexec工具构建混合精度引擎:
trtexec --onnx=model.onnx --saveEngine=model_fp16.plan --fp16 \
--precisionConstraints=prefer --layerPrecisions=<上面生成的层精度字符串>
2. 使用Polygraphy调试工具
TensorRT提供的Polygraphy工具可以帮助开发者调试精度问题:
polygraphy debug precision model.onnx --fp16 --tactic-sources cublas \
--verbose -p float32 \
--check polygraphy run polygraphy_debug.engine --trt \
--load-inputs input.json --load-outputs golden.json --abs 1e-2
这个命令会尝试找出导致数值问题的层,并自动调整这些层的精度。
3. 考虑使用ONNX Runtime
如果模型在ONNX Runtime中能够正确运行FP16推理,而性能差异可以接受,可以考虑直接使用ONNX Runtime作为推理后端。
最佳实践建议
-
逐步转换策略:不要一次性将整个模型转换为FP16,而是逐步转换并验证每一部分的输出。
-
数值范围检查:在模型训练和转换过程中,添加数值范围检查机制,识别潜在的数值不稳定操作。
-
版本兼容性测试:如果可能,在不同版本的TensorRT上测试模型,选择最稳定的版本。
-
模型结构调整:对于特别容易出现数值问题的结构(如深层的累积操作),考虑从模型设计层面进行优化。
结论
FP16精度转换虽然能带来性能提升,但也引入了数值稳定性挑战。通过混合精度策略和适当的工具链支持,开发者可以在保持模型精度的同时获得FP16的性能优势。理解模型的计算特性和TensorRT的工作原理是解决这类问题的关键。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00