TensorRT模型输出NaN问题的分析与解决
2025-05-21 04:48:39作者:韦蓉瑛
问题背景
在使用TensorRT部署SuperGlue模型时,开发者遇到了一个常见但棘手的问题:模型推理结果总是返回NaN(非数字)值。这种情况通常发生在模型转换或推理过程中出现数值不稳定的情况下。
环境配置
该问题出现在以下环境中:
- TensorRT版本:8.6.2.3
- GPU设备:NVIDIA Jetson Orin NX(16GB内存)
- CUDA版本:12.02.140
- cuDNN版本:8.9.4.25
- 操作系统:Ubuntu 22.04 LTS
- Python版本:3.10.12
问题现象
开发者成功将SuperGlue模型转换为ONNX格式,并进一步转换为TensorRT引擎。模型能够正常运行且不报错,但输出结果始终为NaN。当开发者尝试设置输出形状大于预期形状时,在预期形状部分得到NaN,其他部分则得到0.0。
根本原因分析
经过技术社区的分析,问题根源在于TensorRT的FP16(半精度浮点)优化标志。在模型转换过程中,开发者启用了FP16模式(通过config.set_flag(trt.BuilderFlag.FP16)),这可能导致数值精度不足,从而引发数值下溢或上溢问题。
解决方案
解决此问题的方法非常简单但有效:
- 禁用FP16优化:在构建TensorRT引擎时,注释掉或移除设置FP16标志的代码行。
# 注释掉这行代码
# config.set_flag(trt.BuilderFlag.FP16)
- 使用FP32精度:保持默认的FP32(单精度浮点)精度可以避免因精度不足导致的数值不稳定问题。
技术原理
FP16(半精度浮点)使用16位表示浮点数,相比FP32(32位)可以:
- 减少内存占用
- 提高计算速度
- 增加吞吐量
但同时也会带来:
- 数值表示范围缩小
- 精度降低
- 更容易出现数值不稳定
在SuperGlue这类计算机视觉模型中,某些层的计算可能对数值精度特别敏感,使用FP16可能导致中间结果超出表示范围或损失关键精度信息,最终导致输出为NaN。
最佳实践建议
-
精度选择策略:
- 首先尝试FP32模式确保模型正确性
- 在验证模型稳定后,可尝试启用FP16进行性能优化
- 对于特别敏感的模型,考虑混合精度策略
-
数值稳定性检查:
- 在模型转换过程中添加数值范围检查
- 监控中间结果的数值范围
- 使用TensorRT的调试工具分析各层输出
-
模型优化:
- 对于FP16模式,考虑添加数值稳定层
- 调整模型参数范围以适应FP16表示
- 使用适当的归一化技术
总结
TensorRT模型输出NaN是一个常见问题,通常与数值精度设置有关。通过禁用FP16优化可以解决大多数此类问题。在实际部署中,开发者需要在模型精度和推理性能之间找到平衡点,根据具体应用场景选择适当的精度级别。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248