TensorRT模型输出NaN问题的分析与解决
2025-05-21 15:49:15作者:韦蓉瑛
问题背景
在使用TensorRT部署SuperGlue模型时,开发者遇到了一个常见但棘手的问题:模型推理结果总是返回NaN(非数字)值。这种情况通常发生在模型转换或推理过程中出现数值不稳定的情况下。
环境配置
该问题出现在以下环境中:
- TensorRT版本:8.6.2.3
- GPU设备:NVIDIA Jetson Orin NX(16GB内存)
- CUDA版本:12.02.140
- cuDNN版本:8.9.4.25
- 操作系统:Ubuntu 22.04 LTS
- Python版本:3.10.12
问题现象
开发者成功将SuperGlue模型转换为ONNX格式,并进一步转换为TensorRT引擎。模型能够正常运行且不报错,但输出结果始终为NaN。当开发者尝试设置输出形状大于预期形状时,在预期形状部分得到NaN,其他部分则得到0.0。
根本原因分析
经过技术社区的分析,问题根源在于TensorRT的FP16(半精度浮点)优化标志。在模型转换过程中,开发者启用了FP16模式(通过config.set_flag(trt.BuilderFlag.FP16)
),这可能导致数值精度不足,从而引发数值下溢或上溢问题。
解决方案
解决此问题的方法非常简单但有效:
- 禁用FP16优化:在构建TensorRT引擎时,注释掉或移除设置FP16标志的代码行。
# 注释掉这行代码
# config.set_flag(trt.BuilderFlag.FP16)
- 使用FP32精度:保持默认的FP32(单精度浮点)精度可以避免因精度不足导致的数值不稳定问题。
技术原理
FP16(半精度浮点)使用16位表示浮点数,相比FP32(32位)可以:
- 减少内存占用
- 提高计算速度
- 增加吞吐量
但同时也会带来:
- 数值表示范围缩小
- 精度降低
- 更容易出现数值不稳定
在SuperGlue这类计算机视觉模型中,某些层的计算可能对数值精度特别敏感,使用FP16可能导致中间结果超出表示范围或损失关键精度信息,最终导致输出为NaN。
最佳实践建议
-
精度选择策略:
- 首先尝试FP32模式确保模型正确性
- 在验证模型稳定后,可尝试启用FP16进行性能优化
- 对于特别敏感的模型,考虑混合精度策略
-
数值稳定性检查:
- 在模型转换过程中添加数值范围检查
- 监控中间结果的数值范围
- 使用TensorRT的调试工具分析各层输出
-
模型优化:
- 对于FP16模式,考虑添加数值稳定层
- 调整模型参数范围以适应FP16表示
- 使用适当的归一化技术
总结
TensorRT模型输出NaN是一个常见问题,通常与数值精度设置有关。通过禁用FP16优化可以解决大多数此类问题。在实际部署中,开发者需要在模型精度和推理性能之间找到平衡点,根据具体应用场景选择适当的精度级别。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K