Dapper多表查询结果合并的最佳实践
2025-05-12 13:12:09作者:盛欣凯Ernestine
在使用Dapper进行多表查询时,开发人员经常会遇到结果集合并的问题。本文将详细介绍如何正确处理Dapper的多表查询结果,特别是当查询结果包含一对多关系时的解决方案。
问题背景
当使用Dapper的QueryAsync方法执行包含多个JOIN的SQL查询时,返回的结果集通常包含重复的主表数据。例如,一个文档可能关联多个标签和多个协作者,查询结果会为每个关联组合返回一行数据。
核心挑战
直接使用Dapper的多重映射功能时,如果不进行额外处理,会导致:
- 主表数据重复
- 关联表数据无法正确合并到主对象中
- 每次映射回调都会创建新的主对象实例
解决方案
基本映射实现
首先,我们使用Dapper的QueryAsync方法进行多重映射:
var documents = await connection.QueryAsync<DocumentDto, LabelDto, CollaboratorDto, DocumentDto>(
GetDocumentSql,
(doc, label, collaborator) => {
if (label is not null && label.LabelId != Guid.Empty) {
doc.Labels.Add(label);
}
if (collaborator.ProfileId != Guid.Empty) {
doc.Collaborators.Add(collaborator);
}
return doc;
},
new { Id = documentId.ToString() },
splitOn: "LabelId,DocumentId");
结果集合并处理
然后,我们需要对结果进行分组和去重处理:
var result = documents
.GroupBy(d => d.Id)
.Select(g => {
var groupedDocument = g.First();
groupedDocument.Labels = g.Select(d => d.Labels.Single())
.GroupBy(l => l.LabelId)
.Select(l => l.First())
.ToList();
groupedDocument.Collaborators = g.Select(d => d.Collaborators.Single())
.GroupBy(c => c.ProfileId)
.Select(c => c.First())
.ToList();
return groupedDocument;
});
实现原理
- 分组处理:首先按照主表ID进行分组,确保每个主对象只处理一次
- 去重处理:对于关联的子对象(标签和协作者),按照它们的ID进行分组去重
- 结果合并:将去重后的子对象集合重新赋值给主对象
性能考虑
这种解决方案虽然功能完善,但在处理大量数据时可能会有性能问题,因为:
- 需要进行多次分组操作
- 需要创建中间集合
- 内存中需要保存完整的结果集
对于大数据量场景,建议考虑以下优化方案:
- 使用存储过程预先聚合数据
- 分多次查询然后手动合并
- 使用Dapper的
QueryMultiple方法分别查询主表和关联表
总结
Dapper的多表查询功能强大但需要开发者手动处理结果集合并。通过合理的分组和去重策略,我们可以有效地解决一对多关系查询中的结果合并问题。理解这一模式后,开发者可以灵活应用于各种复杂查询场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.51 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
89
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
337
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
437
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
698
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19