Dapper多表查询结果合并的最佳实践
2025-05-12 18:24:49作者:盛欣凯Ernestine
在使用Dapper进行多表查询时,开发人员经常会遇到结果集合并的问题。本文将详细介绍如何正确处理Dapper的多表查询结果,特别是当查询结果包含一对多关系时的解决方案。
问题背景
当使用Dapper的QueryAsync方法执行包含多个JOIN的SQL查询时,返回的结果集通常包含重复的主表数据。例如,一个文档可能关联多个标签和多个协作者,查询结果会为每个关联组合返回一行数据。
核心挑战
直接使用Dapper的多重映射功能时,如果不进行额外处理,会导致:
- 主表数据重复
- 关联表数据无法正确合并到主对象中
- 每次映射回调都会创建新的主对象实例
解决方案
基本映射实现
首先,我们使用Dapper的QueryAsync方法进行多重映射:
var documents = await connection.QueryAsync<DocumentDto, LabelDto, CollaboratorDto, DocumentDto>(
GetDocumentSql,
(doc, label, collaborator) => {
if (label is not null && label.LabelId != Guid.Empty) {
doc.Labels.Add(label);
}
if (collaborator.ProfileId != Guid.Empty) {
doc.Collaborators.Add(collaborator);
}
return doc;
},
new { Id = documentId.ToString() },
splitOn: "LabelId,DocumentId");
结果集合并处理
然后,我们需要对结果进行分组和去重处理:
var result = documents
.GroupBy(d => d.Id)
.Select(g => {
var groupedDocument = g.First();
groupedDocument.Labels = g.Select(d => d.Labels.Single())
.GroupBy(l => l.LabelId)
.Select(l => l.First())
.ToList();
groupedDocument.Collaborators = g.Select(d => d.Collaborators.Single())
.GroupBy(c => c.ProfileId)
.Select(c => c.First())
.ToList();
return groupedDocument;
});
实现原理
- 分组处理:首先按照主表ID进行分组,确保每个主对象只处理一次
- 去重处理:对于关联的子对象(标签和协作者),按照它们的ID进行分组去重
- 结果合并:将去重后的子对象集合重新赋值给主对象
性能考虑
这种解决方案虽然功能完善,但在处理大量数据时可能会有性能问题,因为:
- 需要进行多次分组操作
- 需要创建中间集合
- 内存中需要保存完整的结果集
对于大数据量场景,建议考虑以下优化方案:
- 使用存储过程预先聚合数据
- 分多次查询然后手动合并
- 使用Dapper的
QueryMultiple方法分别查询主表和关联表
总结
Dapper的多表查询功能强大但需要开发者手动处理结果集合并。通过合理的分组和去重策略,我们可以有效地解决一对多关系查询中的结果合并问题。理解这一模式后,开发者可以灵活应用于各种复杂查询场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669