Dapper多表查询结果合并的最佳实践
2025-05-12 13:12:09作者:盛欣凯Ernestine
在使用Dapper进行多表查询时,开发人员经常会遇到结果集合并的问题。本文将详细介绍如何正确处理Dapper的多表查询结果,特别是当查询结果包含一对多关系时的解决方案。
问题背景
当使用Dapper的QueryAsync方法执行包含多个JOIN的SQL查询时,返回的结果集通常包含重复的主表数据。例如,一个文档可能关联多个标签和多个协作者,查询结果会为每个关联组合返回一行数据。
核心挑战
直接使用Dapper的多重映射功能时,如果不进行额外处理,会导致:
- 主表数据重复
- 关联表数据无法正确合并到主对象中
- 每次映射回调都会创建新的主对象实例
解决方案
基本映射实现
首先,我们使用Dapper的QueryAsync方法进行多重映射:
var documents = await connection.QueryAsync<DocumentDto, LabelDto, CollaboratorDto, DocumentDto>(
GetDocumentSql,
(doc, label, collaborator) => {
if (label is not null && label.LabelId != Guid.Empty) {
doc.Labels.Add(label);
}
if (collaborator.ProfileId != Guid.Empty) {
doc.Collaborators.Add(collaborator);
}
return doc;
},
new { Id = documentId.ToString() },
splitOn: "LabelId,DocumentId");
结果集合并处理
然后,我们需要对结果进行分组和去重处理:
var result = documents
.GroupBy(d => d.Id)
.Select(g => {
var groupedDocument = g.First();
groupedDocument.Labels = g.Select(d => d.Labels.Single())
.GroupBy(l => l.LabelId)
.Select(l => l.First())
.ToList();
groupedDocument.Collaborators = g.Select(d => d.Collaborators.Single())
.GroupBy(c => c.ProfileId)
.Select(c => c.First())
.ToList();
return groupedDocument;
});
实现原理
- 分组处理:首先按照主表ID进行分组,确保每个主对象只处理一次
- 去重处理:对于关联的子对象(标签和协作者),按照它们的ID进行分组去重
- 结果合并:将去重后的子对象集合重新赋值给主对象
性能考虑
这种解决方案虽然功能完善,但在处理大量数据时可能会有性能问题,因为:
- 需要进行多次分组操作
- 需要创建中间集合
- 内存中需要保存完整的结果集
对于大数据量场景,建议考虑以下优化方案:
- 使用存储过程预先聚合数据
- 分多次查询然后手动合并
- 使用Dapper的
QueryMultiple方法分别查询主表和关联表
总结
Dapper的多表查询功能强大但需要开发者手动处理结果集合并。通过合理的分组和去重策略,我们可以有效地解决一对多关系查询中的结果合并问题。理解这一模式后,开发者可以灵活应用于各种复杂查询场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249