BERT在序列标注与文本分类中的应用模板
项目介绍
BERT-for-Sequence-Labeling-and-Text-Classification 是一个基于BERT的开源项目,专门设计用来简化在序列标注和文本分类任务中运用BERT的过程。此项目由yuanxiaosc开发,旨在推广BERT在更多自然语言处理(NLP)任务中的应用。已经验证该模板在多个重要数据集上运行良好,包括CoNLL-2003命名实体识别、Snips的槽填充与意图预测以及ATIS数据集。
项目快速启动
安装依赖
首先,确保你的环境满足以下条件:
- Python 3.6及以上版本
- TensorFlow 1.12.0或更高版本
- Sklearn
通过以下命令安装必要的库:
pip install -r requirements.txt
运行代码示例
以Snips联合槽位填充和意图预测任务为例,你需要先下载Google的BERT预训练模型,并将其解压缩至pretrained_model文件夹下。接着,你可以直接运行脚本来开始任务:
训练模型
python run_sequence_labeling_and_text_classification.py \
--task_name=snips \
--do_train=true \
--do_eval=true \
--data_dir=data/snips_Intent_Detection_and_Slot_Filling \
--vocab_file=pretrained_model/uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file=pretrained_model/uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=pretrained_model/uncased_L-12_H-768_A-12/bert_model.ckpt \
--num_train_epochs=3.0 \
--output_dir=./store_fine_tuned_model/snips_join_task_epoch3/
预测
完成训练后,进行预测:
python run_sequence_labeling_and_text_classification.py \
--task_name=Snips \
--do_predict=true \
--data_dir=data/snips_Intent_Detection_and_Slot_Filling \
--vocab_file=pretrained_model/uncased_L-12_H-768_A-12/vocab.txt \
--bert_config_file=pretrained_model/uncased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=./store_fine_tuned_model/snips_join_task_epoch3/model.ckpt-1000 \
--max_seq_length=128 \
--output_dir=./output_model_prediction/snips_join_task_epoch3_ckpt1000/
记得替换路径和任务名称以匹配你的实际设置。
应用案例和最佳实践
项目提供了针对不同NLP任务的代码示例,比如CoNLL-2003的命名实体识别、Snips与ATIS的联合意图预测及槽填充。最佳实践中,开发者应从现有的数据处理类(DataProcessor)中学习如何添加新的任务,调整模型参数以优化性能,并监控训练过程中的指标变化。
典型生态项目
虽然该仓库专注于BERT在特定场景的应用,BERT的灵活性使其能够融入更广泛的NLP生态。例如,结合Hugging Face的Transformers库,可以进一步探索BERT在对话系统、情感分析等领域的应用。社区内亦有许多项目基于BERT进行了定制化开发,用于提升特定领域的文本处理能力,但具体案例需在相关论坛和GitHub上查找,每个项目都有其独特的应用场景和技术实现细节。
以上就是关于 BERT-for-Sequence-Labeling-and-Text-Classification 的简要指导与说明。此项目为希望采用BERT技术解决NLP问题的开发者提供了一个良好的起点。通过实践这些步骤,你可以迅速将BERT应用于自己的文本处理任务中。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00