Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter:下一代中文语义标注工具
2024-05-20 14:26:29作者:裘旻烁
项目介绍
在自然语言处理领域,准确地进行语义标注是许多关键任务的基础,如命名实体识别(NER)和词性标注(POS)。Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter 是一个创新的开源项目,它结合了BERT的强大预训练能力和词汇表增强策略,旨在提升中文序列标注的性能。该项目由ACL2021论文支持,并提供了详细的代码与模型检查点,便于研究人员和开发者快速上手。
项目技术分析
该项目利用BERT适配器来增强基础模型,这是一种轻量级的方法,可以在保持原模型参数不变的情况下引入额外的学习能力。这种架构尤其适用于分布式训练,可以在多GPU环境下进行有效训练。此外,项目还融入了词汇表增强策略,将词汇信息整合到模型中,以提高对具体词汇的识别准确性。
项目及技术应用场景
Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter 可广泛应用于以下场景:
- 命名实体识别:自动识别文本中的地点、人名、组织等实体,助力信息抽取和搜索引擎优化。
 - 词性标注:分析文本词汇的语法属性,用于句法分析、机器翻译和语言理解。
 - 中文分词:通过字符级别的标注,实现精准的中文词语边界划分,是中文处理的关键步骤。
 - 学术研究:为自然语言处理的研究者提供了一个优秀的基线系统,以便进一步探索序列标注的新方法。
 
项目特点
- 高效适配BERT:使用BERT适配器,无需重新训练整个BERT模型,大大减少了计算资源的需求。
 - 词汇表增强:通过集成词汇表信息,改善了模型对特定词汇的识别能力。
 - 全面的数据集支持:涵盖多个主流中文标注数据集,包括Weibo NER、Ontonotes4 NER、MSRA NER等。
 - 易于使用:提供清晰的输入格式、脚本和示例,方便用户快速启动自己的实验。
 - 社区支持:作者提供联系方式,便于用户提问和交流,促进项目的持续改进。
 
如果你想在你的自然语言处理应用中提升中文序列标注的效果,这个项目无疑是一个值得尝试的选择。立即下载并开始你的旅程,发现BERT适应器带来的强大增强效果吧!
引用:
```python
@inproceedings{liu-etal-2021-lexicon,
    title = "Lexicon Enhanced {C}hinese Sequence Labeling Using {BERT} Adapter",
    author = "Liu, Wei  and
      Fu, Xiyan  and
      Zhang, Yue  and
      Xiao, Wenming",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.454",
    doi = "10.18653/v1/2021.acl-long.454",
    pages = "5847--5858"
}
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446