Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter:下一代中文语义标注工具
2024-05-20 14:26:29作者:裘旻烁
项目介绍
在自然语言处理领域,准确地进行语义标注是许多关键任务的基础,如命名实体识别(NER)和词性标注(POS)。Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter 是一个创新的开源项目,它结合了BERT的强大预训练能力和词汇表增强策略,旨在提升中文序列标注的性能。该项目由ACL2021论文支持,并提供了详细的代码与模型检查点,便于研究人员和开发者快速上手。
项目技术分析
该项目利用BERT适配器来增强基础模型,这是一种轻量级的方法,可以在保持原模型参数不变的情况下引入额外的学习能力。这种架构尤其适用于分布式训练,可以在多GPU环境下进行有效训练。此外,项目还融入了词汇表增强策略,将词汇信息整合到模型中,以提高对具体词汇的识别准确性。
项目及技术应用场景
Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter 可广泛应用于以下场景:
- 命名实体识别:自动识别文本中的地点、人名、组织等实体,助力信息抽取和搜索引擎优化。
- 词性标注:分析文本词汇的语法属性,用于句法分析、机器翻译和语言理解。
- 中文分词:通过字符级别的标注,实现精准的中文词语边界划分,是中文处理的关键步骤。
- 学术研究:为自然语言处理的研究者提供了一个优秀的基线系统,以便进一步探索序列标注的新方法。
项目特点
- 高效适配BERT:使用BERT适配器,无需重新训练整个BERT模型,大大减少了计算资源的需求。
- 词汇表增强:通过集成词汇表信息,改善了模型对特定词汇的识别能力。
- 全面的数据集支持:涵盖多个主流中文标注数据集,包括Weibo NER、Ontonotes4 NER、MSRA NER等。
- 易于使用:提供清晰的输入格式、脚本和示例,方便用户快速启动自己的实验。
- 社区支持:作者提供联系方式,便于用户提问和交流,促进项目的持续改进。
如果你想在你的自然语言处理应用中提升中文序列标注的效果,这个项目无疑是一个值得尝试的选择。立即下载并开始你的旅程,发现BERT适应器带来的强大增强效果吧!
引用:
```python
@inproceedings{liu-etal-2021-lexicon,
title = "Lexicon Enhanced {C}hinese Sequence Labeling Using {BERT} Adapter",
author = "Liu, Wei and
Fu, Xiyan and
Zhang, Yue and
Xiao, Wenming",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.454",
doi = "10.18653/v1/2021.acl-long.454",
pages = "5847--5858"
}
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217