SHAP项目v0.47.0版本发布:可视化增强与性能优化
SHAP(SHapley Additive exPlanations)是一个用于解释机器学习模型预测结果的Python库,它基于合作理论中的Shapley值概念,为模型预测提供直观且一致的解释。该项目通过计算每个特征对模型预测的贡献度,帮助数据科学家和机器学习工程师理解模型行为,提高模型的可解释性和透明度。
重大变更
本次发布的v0.47.0版本中,最值得注意的变更是对传统条形图的废弃警告。开发团队引入了新的Explainer API,并提供了详细的迁移指南,帮助用户平滑过渡到更现代化的可视化接口。这一变更反映了SHAP项目对API一致性和用户体验的持续改进。
新增功能亮点
可视化增强
-
分类特征支持:
shap.plots.scatter现在支持分类特征,这使得在处理包含类别型数据的数据集时,可视化结果更加准确和直观。 -
图像可视化参数扩展:新增了
vmax参数,允许用户更精细地控制图像绘制的颜色映射范围,提高了可视化效果的灵活性。 -
蜜蜂群图(beeswarm)改进:
- 新的绘图API现在可以接受并返回matplotlib的axes对象,便于与其他绘图库集成
- 新增选项可以创建不包含其他特征总和的蜜蜂群图,满足特定分析需求
-
自定义可视化接口:全新的可视化定制接口允许用户深度定制各种图表样式,特别是条形图现在支持完全自定义样式,为专业用户提供了更大的灵活性。
性能优化
-
TreeExplainer数值稳定性增强:针对树模型的解释器进行了数值敏感度优化,提高了计算结果的稳定性和可靠性。
-
非树模型KernelExplainer加速:对非树模型的核解释器进行了性能优化,显著提高了计算速度,使大规模数据集的分析更加高效。
问题修复与改进
本次版本修复了多个关键问题,包括:
- 修复了KernelExplainer中的logit转换错误
- 解决了summary_plot中的类型错误问题
- 修正了多类别情况下summary plot的显示问题
- 修复了图像标签选项在多行显示时的问题
- 改进了颜色映射的处理方式
文档与维护改进
开发团队对文档进行了全面检查和更新,包括:
- 修正了多个文档中的错误和表述不清之处
- 改进了类型提示和文档字符串
- 使用intersphinx更好地链接外部文档
- 固定了文档依赖版本以确保可复现性
在代码维护方面,团队进行了多项内部重构和优化:
- 重构了Tree explainers中的feature_perturbation处理
- 优化了解释操作的实现
- 移除了已弃用的未使用代码
- 改进了随机数生成器的处理方式
总结
SHAP v0.47.0版本在可视化功能和性能方面都有显著提升,特别是新增的分类特征支持和自定义可视化接口,为模型解释提供了更多可能性。性能优化使得大规模模型分析更加高效,而众多问题修复则提高了库的稳定性和可靠性。这些改进使SHAP继续保持在模型可解释性工具的前沿位置,为数据科学家提供更加强大和灵活的工具来理解和解释他们的机器学习模型。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00