DisEnvisioner项目使用教程
2025-04-21 22:28:29作者:牧宁李
1. 项目目录结构及介绍
DisEnvisioner项目的目录结构如下:
DisEnvisioner/
├── assets/ # 存放示例图片和生成结果
├── disvisioner_modules/ # 包含Disvisioner模块的实现代码
├── envisioner_modules/ # 包含Envisioner模块的实现代码
├── .gitignore # 指定git忽略的文件和目录
├── LICENSE # 项目许可证信息
├── README.md # 项目说明文件
├── global_var.py # 全局变量定义
├── requirements.txt # 项目依赖的Python库
├── run_disenvisioner.py # DisEnvisioner运行脚本
├── run_disenvisioner.sh # DisEnvisioner运行脚本(shell版本)
├── run_disenvisioner_w_ip.py # 带IP-Adapter的DisEnvisioner运行脚本
├── run_disenvisioner_w_ip.sh # 带IP-Adapter的DisEnvisioner运行脚本(shell版本)
└── utils.py # 工具函数定义
assets/
: 包含输入示例和生成示例的图片。disvisioner_modules/
: 实现Disvisioner模块的代码,用于解耦和增强视觉提示。envisioner_modules/
: 实现Envisioner模块的代码,用于生成定制化的图片。.gitignore
: 指定Git应该忽略的文件和目录,例如编译生成的文件、环境配置文件等。LICENSE
: Apache-2.0许可证文件,说明项目的开源协议。README.md
: 项目说明文件,包含项目的简介、使用方法和示例。global_var.py
: 定义项目中使用的全局变量。requirements.txt
: 列出项目依赖的Python库,用于安装所需的环境。run_disenvisioner.py
: Python脚本,用于运行DisEnvisioner程序。run_disenvisioner.sh
: Shell脚本,用于运行DisEnvisioner程序。run_disenvisioner_w_ip.py
: Python脚本,用于运行带有IP-Adapter的DisEnvisioner程序。run_disenvisioner_w_ip.sh
: Shell脚本,用于运行带有IP-Adapter的DisEnvisioner程序。utils.py
: 包含项目中使用的工具函数。
2. 项目的启动文件介绍
项目的启动文件主要有两个Python脚本和两个相应的Shell脚本:
run_disenvisioner.py
: 这是DisEnvisioner程序的主要入口点。它使用预训练的模型和用户提供的参数来生成定制化的图片。用户可以通过修改脚本中的参数来调整生成的图片。run_disenvisioner.sh
: 这是一个Shell脚本,它调用run_disenvisioner.py
来运行程序,方便在Shell环境中使用。
使用Python脚本启动项目的示例命令如下:
python run_disenvisioner.py --pretrained_model_name_or_path "SG161222/Realistic_Vision_V4.0_noVAE" --pretrained_CLIP "openai/clip-vit-large-patch14" --half_precision --resolution 512 --seed 42 --num_samples 5 --scale_object 0.7 --infer_image "path/to/image.jpg" --class_name "Dog" --infer_prompt "a dog running" --output_dir "path/to/output"
3. 项目的配置文件介绍
本项目主要使用requirements.txt
作为配置文件,该文件列出了项目运行所依赖的Python库:
torch
torchvision
imageio
transformers
scipy
PIL
opencv-python
用户需要使用以下命令安装这些依赖:
pip install -r requirements.txt
以上是DisEnvisioner项目的基本使用教程,用户可以根据实际需求调整参数和配置,以达到预期的定制化图片生成效果。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
545
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.01 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23