DisEnvisioner项目使用教程
2025-04-21 20:49:35作者:牧宁李
1. 项目目录结构及介绍
DisEnvisioner项目的目录结构如下:
DisEnvisioner/
├── assets/ # 存放示例图片和生成结果
├── disvisioner_modules/ # 包含Disvisioner模块的实现代码
├── envisioner_modules/ # 包含Envisioner模块的实现代码
├── .gitignore # 指定git忽略的文件和目录
├── LICENSE # 项目许可证信息
├── README.md # 项目说明文件
├── global_var.py # 全局变量定义
├── requirements.txt # 项目依赖的Python库
├── run_disenvisioner.py # DisEnvisioner运行脚本
├── run_disenvisioner.sh # DisEnvisioner运行脚本(shell版本)
├── run_disenvisioner_w_ip.py # 带IP-Adapter的DisEnvisioner运行脚本
├── run_disenvisioner_w_ip.sh # 带IP-Adapter的DisEnvisioner运行脚本(shell版本)
└── utils.py # 工具函数定义
assets/: 包含输入示例和生成示例的图片。disvisioner_modules/: 实现Disvisioner模块的代码,用于解耦和增强视觉提示。envisioner_modules/: 实现Envisioner模块的代码,用于生成定制化的图片。.gitignore: 指定Git应该忽略的文件和目录,例如编译生成的文件、环境配置文件等。LICENSE: Apache-2.0许可证文件,说明项目的开源协议。README.md: 项目说明文件,包含项目的简介、使用方法和示例。global_var.py: 定义项目中使用的全局变量。requirements.txt: 列出项目依赖的Python库,用于安装所需的环境。run_disenvisioner.py: Python脚本,用于运行DisEnvisioner程序。run_disenvisioner.sh: Shell脚本,用于运行DisEnvisioner程序。run_disenvisioner_w_ip.py: Python脚本,用于运行带有IP-Adapter的DisEnvisioner程序。run_disenvisioner_w_ip.sh: Shell脚本,用于运行带有IP-Adapter的DisEnvisioner程序。utils.py: 包含项目中使用的工具函数。
2. 项目的启动文件介绍
项目的启动文件主要有两个Python脚本和两个相应的Shell脚本:
run_disenvisioner.py: 这是DisEnvisioner程序的主要入口点。它使用预训练的模型和用户提供的参数来生成定制化的图片。用户可以通过修改脚本中的参数来调整生成的图片。run_disenvisioner.sh: 这是一个Shell脚本,它调用run_disenvisioner.py来运行程序,方便在Shell环境中使用。
使用Python脚本启动项目的示例命令如下:
python run_disenvisioner.py --pretrained_model_name_or_path "SG161222/Realistic_Vision_V4.0_noVAE" --pretrained_CLIP "openai/clip-vit-large-patch14" --half_precision --resolution 512 --seed 42 --num_samples 5 --scale_object 0.7 --infer_image "path/to/image.jpg" --class_name "Dog" --infer_prompt "a dog running" --output_dir "path/to/output"
3. 项目的配置文件介绍
本项目主要使用requirements.txt作为配置文件,该文件列出了项目运行所依赖的Python库:
torch
torchvision
imageio
transformers
scipy
PIL
opencv-python
用户需要使用以下命令安装这些依赖:
pip install -r requirements.txt
以上是DisEnvisioner项目的基本使用教程,用户可以根据实际需求调整参数和配置,以达到预期的定制化图片生成效果。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248