Apache Hudi在Flink中执行DELETE操作时的分区扫描优化实践
问题背景
在使用Apache Hudi与Flink集成时,开发人员发现了一个性能问题:当通过Flink批处理作业执行DELETE操作时,即使SQL语句中明确指定了分区条件,Hudi仍然会扫描所有分区数据。这种行为导致了不必要的资源消耗,特别是在处理大型表时,甚至可能引发作业超时问题。
技术分析
问题现象
在具体实践中,开发人员创建了一个Hudi表,并通过Flink SQL执行DELETE操作。表结构设计为按x字段分区,DELETE语句中明确指定了x='cl-278'的条件。然而,作业执行时却扫描了全表数据,而非仅扫描目标分区。
从Flink UI的作业DAG图中可以观察到,index_bootstrap操作符成为了性能瓶颈。该操作符处理的数据量与整个表的数据量相当,这与预期仅处理特定分区数据的期望不符。
根本原因
经过深入分析,发现问题根源在于索引配置的缺失。虽然数据摄入作业已经正确配置了桶索引(Bucket Index),但DELETE作业中未指定索引类型,导致Hudi默认使用了不同的索引机制。
Hudi的索引引导(index_bootstrap)操作在以下情况下会被跳过:
- 当操作类型为OVERWRITE时
- 当使用桶索引(Bucket Index)时
- 对于非分区表
由于DELETE作业未明确配置索引类型,系统执行了全表扫描来构建索引,造成了性能问题。
解决方案
正确配置索引
为确保DELETE操作高效执行,需要为DELETE作业配置与摄入作业相同的索引类型。具体配置如下:
CREATE TABLE IF NOT EXISTS hudi_temp(
x STRING,
_date STRING,
_count BIGINT,
type STRING,
update_date TIMESTAMP(3)
) PARTITIONED BY (`x`)
WITH (
'connector' = 'hudi',
'hoodie.datasource.write.recordkey.field'='x,_date',
'path' = '${bucket_path_daily}',
'table.type' = 'COPY_ON_WRITE',
'hoodie.datasource.write.precombine.field'='updated_date',
'write.operation' = 'delete',
'hoodie.datasource.write.partitionpath.field'='x',
'hoodie.write.concurrency.mode'='optimistic_concurrency_control',
'hoodie.write.lock.provider'='org.apache.hudi.client.transaction.lock.InProcessLockProvider',
'hoodie.cleaner.policy.failed.writes'='LAZY',
'hoodie.index.type'= 'BUCKET',
'hoodie.index.bucket.engine' = 'SIMPLE',
'hoodie.bucket.index.num.buckets'='16',
'hoodie.bucket.index.hash.field'='x'
)
并发控制配置
对于需要并发写入的场景,以下配置是必要的:
hoodie.write.concurrency.mode设置为'optimistic_concurrency_control'- 指定合适的锁提供器,如InProcessLockProvider
这些配置需要同时在数据摄入作业和DELETE作业中设置,以确保一致的行为和并发安全性。
实施效果
应用上述解决方案后,DELETE作业表现出显著的性能改进:
- Flink作业DAG中不再出现index_bootstrap操作符
- 作业仅扫描符合条件的分区数据,大幅减少了处理的数据量
- 执行时间从原来的10分钟以上缩短到与数据量成比例的合理范围
- 资源利用率显著降低,避免了因全表扫描导致的系统过载
最佳实践建议
-
索引一致性:确保所有访问同一Hudi表的作业使用相同的索引配置,特别是当涉及写入操作时。
-
桶索引优化:对于大规模数据集,桶索引(Bucket Index)是推荐的选择,它能有效减少状态大小并提高性能。
-
并发控制:在多作业并发写入场景下,必须正确配置乐观并发控制和锁提供器。
-
监控与调优:定期监控作业的DAG结构和各操作符的吞吐量,及时发现潜在的性能问题。
-
版本兼容性:注意Hudi与Flink版本的兼容性,不同版本可能在行为上有差异。
通过遵循这些实践,开发人员可以充分发挥Hudi与Flink集成的优势,实现高效的数据管理和操作。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00