深入理解函数闭包与偏函数在dl-workshop项目中的应用
2025-07-04 09:58:36作者:姚月梅Lane
前言
在深度学习编程中,我们经常需要处理函数的特殊用法。本文将深入探讨函数闭包(closure)和偏函数(partial)这两种强大的编程技术,特别是在dl-workshop项目中的应用场景。这些技术能帮助我们构建符合JAX等框架要求的函数接口,同时保持代码的灵活性。
环境准备
在开始之前,我们需要设置好Jupyter notebook环境:
%load_ext autoreload
%autoreload 2
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
这些配置确保我们的代码能够自动重载、在notebook中显示图形,并以高分辨率渲染图像。
偏函数的概念与应用
基础示例
让我们从一个简单的加法函数开始:
def add(a, b):
return a + b
假设我们想创建一个专门用于加3的函数add_three,可以使用functools.partial来实现:
from functools import partial
add_three = partial(add, b=3)
现在我们可以这样使用它:
add_three(20) # 返回23
偏函数的参数绑定特性
当我们使用partial时,它会固定某些参数的值。例如:
add_three_v2 = partial(add, a=3)
这里需要注意参数绑定的方向性。如果我们尝试这样调用:
add_three_v2(3) # 会报错!
这会引发错误,因为位置参数3被解释为参数a,而a已经被固定为3了。正确的调用方式是:
add_three_v2(b=3) # 返回6
函数闭包技术
闭包基础
闭包是一种函数返回函数的编程模式,内部函数可以访问外部函数的变量:
def closing_function(a):
def closed_function(b):
return a + b
return closed_function
创建加法器工厂
我们可以利用闭包创建一个加法器生成器:
def make_add_something(value):
def closed_function(b):
return b + value
return closed_function
add_three_v3 = make_add_something(3)
add_three_v3(5) # 返回8
闭包的优势
闭包创建的函数具有清晰的签名,这在JAX等框架中特别重要。闭包函数只暴露必要的参数,隐藏了实现细节。
在深度学习中的应用模式
在dl-workshop项目中,推荐使用以下模式构建符合JAX要求的函数:
def some_function_generator(argument1, argument2, keyword_argument1=default_value1):
"""生成器函数,用于创建特定功能的闭包"""
def inner(arg1, arg2, kwarg1=default_value1):
"""符合JAX API要求的内部函数"""
return something
return inner
这种模式有以下几个优点:
- 外部函数负责配置和初始化
- 内部函数保持简洁的接口
- 符合JAX的函数签名要求
- 代码结构清晰,易于维护
技术选型建议
在实际项目中,选择偏函数还是闭包取决于具体需求:
- 偏函数适合简单参数固定的场景
- 闭包更适合需要封装复杂逻辑的情况
- 在JAX生态中,闭包模式更为常见,因为它能更好地控制函数签名
总结
函数闭包和偏函数是Python中强大的编程技术,特别是在dl-workshop这样的深度学习项目中。掌握这些技术可以帮助我们:
- 构建符合框架要求的函数接口
- 提高代码的复用性和可维护性
- 实现更灵活的编程模式
- 更好地组织深度学习模型的组件
希望通过本文的讲解,读者能够深入理解这些概念,并在实际项目中灵活运用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350