使用SDV项目中的GAN生成满足行约束和模式保持的合成数据
2025-06-30 20:47:03作者:廉皓灿Ida
在数据科学和机器学习领域,生成高质量的合成数据是一个重要课题。SDV(Synthetic Data Vault)作为一个强大的Python库,提供了多种合成数据生成方法,其中包括基于生成对抗网络(GAN)的CTGAN模型。本文将详细介绍如何使用SDV中的GAN技术生成满足特定约束条件的合成数据。
问题背景
在实际应用中,我们经常需要生成满足特定约束条件的合成数据。例如,一个包含6列的数据表,其中最后一列是结果标签(取值为0、1或2),其余列需要满足以下条件:
- 所有单元格值必须在0到1之间(包含0和1),且保留两位小数
- 每行中除最后一列外的所有值之和必须恰好等于1
- 生成的合成数据需要保持原始数据中不同结果标签对应的模式特征
- 能够为不同结果标签生成不同数量的合成数据
SDV中的CTGAN解决方案
SDV库中的CTGAN(Conditional Tabular GAN)模型专门为表格数据设计,能够学习原始数据的分布模式并生成相似的合成数据。以下是实现上述需求的完整方案:
1. 数据预处理
在应用CTGAN之前,需要对数据进行适当预处理。确保最后一列是分类标签,其他列是数值类型且范围在[0,1]之间。可以使用SDV的metadata系统来描述数据特征:
from sdv.metadata import SingleTableMetadata
metadata = SingleTableMetadata()
metadata.detect_from_dataframe(data)
metadata.update_column(column_name='outcome', sdtype='categorical')
2. 模型训练
使用CTGAN模型学习数据分布:
from sdv.single_table import CTGANSynthesizer
synthesizer = CTGANSynthesizer(metadata)
synthesizer.fit(data)
3. 添加行约束条件
为了实现"每行除最后一列外和为1"的约束,可以使用SDV的约束系统:
from sdv.constraints import FixedSum
constraint = FixedSum(
columns=['col1', 'col2', 'col3', 'col4', 'col5'],
sum_value=1,
handling_strategy='reject_sampling'
)
synthesizer.add_constraints([constraint])
4. 按类别生成不同数量的数据
CTGAN支持条件生成,可以为不同类别生成不同数量的样本:
# 为outcome=0生成100条数据
synth_data_0 = synthesizer.sample(
num_rows=100,
conditions={'outcome': 0}
)
# 为outcome=1生成200条数据
synth_data_1 = synthesizer.sample(
num_rows=200,
conditions={'outcome': 1}
)
技术细节与优化
- 数值精度控制:通过设置metadata中的列属性,可以确保生成的数值保留两位小数:
metadata.update_column(column_name='col1', sdtype='numerical', computer_representation='Float')
-
模式保持:CTGAN会自动学习不同类别下的数据分布模式,无需额外配置。模型通过条件生成机制确保合成数据保持原始数据的类别特征。
-
约束处理策略:SDV提供了多种约束处理策略:
reject_sampling
:拒绝不满足约束的样本(较慢但精确)transform
:对生成的数据进行后处理以满足约束(较快但可能影响质量)
-
模型调优:可以通过调整CTGAN参数优化生成质量:
epochs
:训练轮数batch_size
:批大小generator_dim
:生成器网络维度discriminator_dim
:判别器网络维度
实际应用建议
- 数据评估:生成数据后,使用SDV的评估模块检查数据质量:
from sdv.evaluation.single_table import evaluate_quality
quality_report = evaluate_quality(real_data, synthetic_data, metadata)
-
增量生成:对于大型数据集,可以考虑分批次生成以节省内存。
-
随机种子:设置随机种子确保结果可复现:
synthesizer = CTGANSynthesizer(metadata, random_seed=42)
通过以上方法,我们可以高效地生成满足复杂约束条件且保持原始数据模式的合成数据,为机器学习模型训练、数据隐私保护等应用场景提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133