使用SDV项目中的GAN生成满足行约束和模式保持的合成数据
2025-06-30 19:17:21作者:廉皓灿Ida
在数据科学和机器学习领域,生成高质量的合成数据是一个重要课题。SDV(Synthetic Data Vault)作为一个强大的Python库,提供了多种合成数据生成方法,其中包括基于生成对抗网络(GAN)的CTGAN模型。本文将详细介绍如何使用SDV中的GAN技术生成满足特定约束条件的合成数据。
问题背景
在实际应用中,我们经常需要生成满足特定约束条件的合成数据。例如,一个包含6列的数据表,其中最后一列是结果标签(取值为0、1或2),其余列需要满足以下条件:
- 所有单元格值必须在0到1之间(包含0和1),且保留两位小数
- 每行中除最后一列外的所有值之和必须恰好等于1
- 生成的合成数据需要保持原始数据中不同结果标签对应的模式特征
- 能够为不同结果标签生成不同数量的合成数据
SDV中的CTGAN解决方案
SDV库中的CTGAN(Conditional Tabular GAN)模型专门为表格数据设计,能够学习原始数据的分布模式并生成相似的合成数据。以下是实现上述需求的完整方案:
1. 数据预处理
在应用CTGAN之前,需要对数据进行适当预处理。确保最后一列是分类标签,其他列是数值类型且范围在[0,1]之间。可以使用SDV的metadata系统来描述数据特征:
from sdv.metadata import SingleTableMetadata
metadata = SingleTableMetadata()
metadata.detect_from_dataframe(data)
metadata.update_column(column_name='outcome', sdtype='categorical')
2. 模型训练
使用CTGAN模型学习数据分布:
from sdv.single_table import CTGANSynthesizer
synthesizer = CTGANSynthesizer(metadata)
synthesizer.fit(data)
3. 添加行约束条件
为了实现"每行除最后一列外和为1"的约束,可以使用SDV的约束系统:
from sdv.constraints import FixedSum
constraint = FixedSum(
columns=['col1', 'col2', 'col3', 'col4', 'col5'],
sum_value=1,
handling_strategy='reject_sampling'
)
synthesizer.add_constraints([constraint])
4. 按类别生成不同数量的数据
CTGAN支持条件生成,可以为不同类别生成不同数量的样本:
# 为outcome=0生成100条数据
synth_data_0 = synthesizer.sample(
num_rows=100,
conditions={'outcome': 0}
)
# 为outcome=1生成200条数据
synth_data_1 = synthesizer.sample(
num_rows=200,
conditions={'outcome': 1}
)
技术细节与优化
- 数值精度控制:通过设置metadata中的列属性,可以确保生成的数值保留两位小数:
metadata.update_column(column_name='col1', sdtype='numerical', computer_representation='Float')
-
模式保持:CTGAN会自动学习不同类别下的数据分布模式,无需额外配置。模型通过条件生成机制确保合成数据保持原始数据的类别特征。
-
约束处理策略:SDV提供了多种约束处理策略:
reject_sampling:拒绝不满足约束的样本(较慢但精确)transform:对生成的数据进行后处理以满足约束(较快但可能影响质量)
-
模型调优:可以通过调整CTGAN参数优化生成质量:
epochs:训练轮数batch_size:批大小generator_dim:生成器网络维度discriminator_dim:判别器网络维度
实际应用建议
- 数据评估:生成数据后,使用SDV的评估模块检查数据质量:
from sdv.evaluation.single_table import evaluate_quality
quality_report = evaluate_quality(real_data, synthetic_data, metadata)
-
增量生成:对于大型数据集,可以考虑分批次生成以节省内存。
-
随机种子:设置随机种子确保结果可复现:
synthesizer = CTGANSynthesizer(metadata, random_seed=42)
通过以上方法,我们可以高效地生成满足复杂约束条件且保持原始数据模式的合成数据,为机器学习模型训练、数据隐私保护等应用场景提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217