使用SDV项目中的GAN生成满足行约束和模式保持的合成数据
2025-06-30 19:17:21作者:廉皓灿Ida
在数据科学和机器学习领域,生成高质量的合成数据是一个重要课题。SDV(Synthetic Data Vault)作为一个强大的Python库,提供了多种合成数据生成方法,其中包括基于生成对抗网络(GAN)的CTGAN模型。本文将详细介绍如何使用SDV中的GAN技术生成满足特定约束条件的合成数据。
问题背景
在实际应用中,我们经常需要生成满足特定约束条件的合成数据。例如,一个包含6列的数据表,其中最后一列是结果标签(取值为0、1或2),其余列需要满足以下条件:
- 所有单元格值必须在0到1之间(包含0和1),且保留两位小数
- 每行中除最后一列外的所有值之和必须恰好等于1
- 生成的合成数据需要保持原始数据中不同结果标签对应的模式特征
- 能够为不同结果标签生成不同数量的合成数据
SDV中的CTGAN解决方案
SDV库中的CTGAN(Conditional Tabular GAN)模型专门为表格数据设计,能够学习原始数据的分布模式并生成相似的合成数据。以下是实现上述需求的完整方案:
1. 数据预处理
在应用CTGAN之前,需要对数据进行适当预处理。确保最后一列是分类标签,其他列是数值类型且范围在[0,1]之间。可以使用SDV的metadata系统来描述数据特征:
from sdv.metadata import SingleTableMetadata
metadata = SingleTableMetadata()
metadata.detect_from_dataframe(data)
metadata.update_column(column_name='outcome', sdtype='categorical')
2. 模型训练
使用CTGAN模型学习数据分布:
from sdv.single_table import CTGANSynthesizer
synthesizer = CTGANSynthesizer(metadata)
synthesizer.fit(data)
3. 添加行约束条件
为了实现"每行除最后一列外和为1"的约束,可以使用SDV的约束系统:
from sdv.constraints import FixedSum
constraint = FixedSum(
columns=['col1', 'col2', 'col3', 'col4', 'col5'],
sum_value=1,
handling_strategy='reject_sampling'
)
synthesizer.add_constraints([constraint])
4. 按类别生成不同数量的数据
CTGAN支持条件生成,可以为不同类别生成不同数量的样本:
# 为outcome=0生成100条数据
synth_data_0 = synthesizer.sample(
num_rows=100,
conditions={'outcome': 0}
)
# 为outcome=1生成200条数据
synth_data_1 = synthesizer.sample(
num_rows=200,
conditions={'outcome': 1}
)
技术细节与优化
- 数值精度控制:通过设置metadata中的列属性,可以确保生成的数值保留两位小数:
metadata.update_column(column_name='col1', sdtype='numerical', computer_representation='Float')
-
模式保持:CTGAN会自动学习不同类别下的数据分布模式,无需额外配置。模型通过条件生成机制确保合成数据保持原始数据的类别特征。
-
约束处理策略:SDV提供了多种约束处理策略:
reject_sampling:拒绝不满足约束的样本(较慢但精确)transform:对生成的数据进行后处理以满足约束(较快但可能影响质量)
-
模型调优:可以通过调整CTGAN参数优化生成质量:
epochs:训练轮数batch_size:批大小generator_dim:生成器网络维度discriminator_dim:判别器网络维度
实际应用建议
- 数据评估:生成数据后,使用SDV的评估模块检查数据质量:
from sdv.evaluation.single_table import evaluate_quality
quality_report = evaluate_quality(real_data, synthetic_data, metadata)
-
增量生成:对于大型数据集,可以考虑分批次生成以节省内存。
-
随机种子:设置随机种子确保结果可复现:
synthesizer = CTGANSynthesizer(metadata, random_seed=42)
通过以上方法,我们可以高效地生成满足复杂约束条件且保持原始数据模式的合成数据,为机器学习模型训练、数据隐私保护等应用场景提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210