PointNetGPD 开源项目教程
2024-09-20 22:43:28作者:鲍丁臣Ursa
1. 项目介绍
PointNetGPD 是一个用于从点云数据中直接检测抓取配置的端到端抓取评估模型。该项目由 Hongzhuo Liang 等人开发,并在 ICRA 2019 上发表。PointNetGPD 的主要目标是解决从点云数据中直接定位机器人抓取配置的挑战性问题。与基于手工深度特征和卷积神经网络(CNN)的最近抓取评估方法相比,PointNetGPD 更加轻量级,并且能够直接处理位于夹爪内的 3D 点云数据进行抓取评估。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- Python 3.10
- PyTorch
- PCL (Point Cloud Library)
- ROS (可选,用于机器人抓取)
2.2 安装步骤
-
克隆项目仓库
git clone https://github.com/lianghongzhuo/PointNetGPD.git cd PointNetGPD -
设置环境变量
在
~/.bashrc文件中添加以下内容:export PointNetGPD_FOLDER=$HOME/code/PointNetGPD -
安装依赖
使用虚拟环境安装依赖:
conda create -n pointnetgpd python=3.10 numpy ipython matplotlib opencv mayavi -c conda-forge conda activate pointnetgpd pip install -r requirements.txt -
安装 PCL 工具
sudo apt install pcl-tools -
安装 PyTorch
根据你的 CUDA 版本安装 PyTorch:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 -
安装修改后的 meshpy 和 dex-net
cd $PointNetGPD_FOLDER/meshpy python setup.py develop cd $PointNetGPD_FOLDER/dex-net python setup.py develop
2.3 数据准备
-
下载数据集
你可以从以下链接下载数据集:
wget https://tams.informatik.uni-hamburg.de/research/datasets/PointNetGPD_grasps_dataset.zip unzip PointNetGPD_grasps_dataset.zip mv ycb_grasp $PointNetGPD_FOLDER/PointNetGPD/data/ -
生成点云数据
使用以下命令生成点云数据:
cd $PointNetGPD_FOLDER/PointNetGPD python ycb_cloud_generate.py
2.4 训练模型
-
启动 TensorBoard
tensorboard --logdir=/assets/log --port=8080 -
运行训练脚本
python main_1v.py --epoch 200 --mode train --batch-size 16
3. 应用案例和最佳实践
3.1 机器人抓取
PointNetGPD 可以应用于机器人抓取任务中,通过从点云数据中直接检测抓取配置,帮助机器人实现自主抓取。以下是一个简单的应用案例:
-
启动感知节点
cd $PointNetGPD_FOLDER/dex-net/apps python kinect2grasp.py --cuda --gpu 0 --model_type 750 -
执行抓取
使用 ROS 控制机器人执行抓取:
roslaunch panda_go_grasp go_grasp.launch
3.2 最佳实践
- 数据集准备:确保数据集的质量和多样性,以提高模型的泛化能力。
- 超参数调优:根据具体任务调整训练超参数,如学习率、批量大小等。
- 模型评估:在训练过程中使用验证集评估模型性能,及时调整模型结构和参数。
4. 典型生态项目
4.1 Dex-Net
Dex-Net 是一个用于机器人抓取的深度学习框架,与 PointNetGPD 结合使用可以进一步提升抓取性能。
4.2 MeshPy
MeshPy 是一个用于处理 3D 网格数据的 Python 库,PointNetGPD 使用 MeshPy 进行点云数据的预处理。
4.3 PCL (Point Cloud Library)
PCL 是一个用于处理点云数据的开源库,PointNetGPD 使用 PCL 进行点云数据的处理和可视化。
通过结合这些生态项目,可以进一步提升 PointNetGPD 在机器人抓取任务中的表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249