PointNetGPD 开源项目教程
2024-09-20 12:55:25作者:鲍丁臣Ursa
1. 项目介绍
PointNetGPD 是一个用于从点云数据中直接检测抓取配置的端到端抓取评估模型。该项目由 Hongzhuo Liang 等人开发,并在 ICRA 2019 上发表。PointNetGPD 的主要目标是解决从点云数据中直接定位机器人抓取配置的挑战性问题。与基于手工深度特征和卷积神经网络(CNN)的最近抓取评估方法相比,PointNetGPD 更加轻量级,并且能够直接处理位于夹爪内的 3D 点云数据进行抓取评估。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- Python 3.10
- PyTorch
- PCL (Point Cloud Library)
- ROS (可选,用于机器人抓取)
2.2 安装步骤
-
克隆项目仓库
git clone https://github.com/lianghongzhuo/PointNetGPD.git cd PointNetGPD
-
设置环境变量
在
~/.bashrc
文件中添加以下内容:export PointNetGPD_FOLDER=$HOME/code/PointNetGPD
-
安装依赖
使用虚拟环境安装依赖:
conda create -n pointnetgpd python=3.10 numpy ipython matplotlib opencv mayavi -c conda-forge conda activate pointnetgpd pip install -r requirements.txt
-
安装 PCL 工具
sudo apt install pcl-tools
-
安装 PyTorch
根据你的 CUDA 版本安装 PyTorch:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
-
安装修改后的 meshpy 和 dex-net
cd $PointNetGPD_FOLDER/meshpy python setup.py develop cd $PointNetGPD_FOLDER/dex-net python setup.py develop
2.3 数据准备
-
下载数据集
你可以从以下链接下载数据集:
wget https://tams.informatik.uni-hamburg.de/research/datasets/PointNetGPD_grasps_dataset.zip unzip PointNetGPD_grasps_dataset.zip mv ycb_grasp $PointNetGPD_FOLDER/PointNetGPD/data/
-
生成点云数据
使用以下命令生成点云数据:
cd $PointNetGPD_FOLDER/PointNetGPD python ycb_cloud_generate.py
2.4 训练模型
-
启动 TensorBoard
tensorboard --logdir=/assets/log --port=8080
-
运行训练脚本
python main_1v.py --epoch 200 --mode train --batch-size 16
3. 应用案例和最佳实践
3.1 机器人抓取
PointNetGPD 可以应用于机器人抓取任务中,通过从点云数据中直接检测抓取配置,帮助机器人实现自主抓取。以下是一个简单的应用案例:
-
启动感知节点
cd $PointNetGPD_FOLDER/dex-net/apps python kinect2grasp.py --cuda --gpu 0 --model_type 750
-
执行抓取
使用 ROS 控制机器人执行抓取:
roslaunch panda_go_grasp go_grasp.launch
3.2 最佳实践
- 数据集准备:确保数据集的质量和多样性,以提高模型的泛化能力。
- 超参数调优:根据具体任务调整训练超参数,如学习率、批量大小等。
- 模型评估:在训练过程中使用验证集评估模型性能,及时调整模型结构和参数。
4. 典型生态项目
4.1 Dex-Net
Dex-Net 是一个用于机器人抓取的深度学习框架,与 PointNetGPD 结合使用可以进一步提升抓取性能。
4.2 MeshPy
MeshPy 是一个用于处理 3D 网格数据的 Python 库,PointNetGPD 使用 MeshPy 进行点云数据的预处理。
4.3 PCL (Point Cloud Library)
PCL 是一个用于处理点云数据的开源库,PointNetGPD 使用 PCL 进行点云数据的处理和可视化。
通过结合这些生态项目,可以进一步提升 PointNetGPD 在机器人抓取任务中的表现。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选
收起

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
338
1.18 K

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
898
534

React Native鸿蒙化仓库
C++
188
265

deepin linux kernel
C
22
6

openGauss kernel ~ openGauss is an open source relational database management system
C++
140
188

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
374
387

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
86
4

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
114
45