PointNetGPD 开源项目教程
2024-09-20 22:43:28作者:鲍丁臣Ursa
1. 项目介绍
PointNetGPD 是一个用于从点云数据中直接检测抓取配置的端到端抓取评估模型。该项目由 Hongzhuo Liang 等人开发,并在 ICRA 2019 上发表。PointNetGPD 的主要目标是解决从点云数据中直接定位机器人抓取配置的挑战性问题。与基于手工深度特征和卷积神经网络(CNN)的最近抓取评估方法相比,PointNetGPD 更加轻量级,并且能够直接处理位于夹爪内的 3D 点云数据进行抓取评估。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你的系统已经安装了以下依赖:
- Python 3.10
- PyTorch
- PCL (Point Cloud Library)
- ROS (可选,用于机器人抓取)
2.2 安装步骤
-
克隆项目仓库
git clone https://github.com/lianghongzhuo/PointNetGPD.git cd PointNetGPD -
设置环境变量
在
~/.bashrc文件中添加以下内容:export PointNetGPD_FOLDER=$HOME/code/PointNetGPD -
安装依赖
使用虚拟环境安装依赖:
conda create -n pointnetgpd python=3.10 numpy ipython matplotlib opencv mayavi -c conda-forge conda activate pointnetgpd pip install -r requirements.txt -
安装 PCL 工具
sudo apt install pcl-tools -
安装 PyTorch
根据你的 CUDA 版本安装 PyTorch:
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 -
安装修改后的 meshpy 和 dex-net
cd $PointNetGPD_FOLDER/meshpy python setup.py develop cd $PointNetGPD_FOLDER/dex-net python setup.py develop
2.3 数据准备
-
下载数据集
你可以从以下链接下载数据集:
wget https://tams.informatik.uni-hamburg.de/research/datasets/PointNetGPD_grasps_dataset.zip unzip PointNetGPD_grasps_dataset.zip mv ycb_grasp $PointNetGPD_FOLDER/PointNetGPD/data/ -
生成点云数据
使用以下命令生成点云数据:
cd $PointNetGPD_FOLDER/PointNetGPD python ycb_cloud_generate.py
2.4 训练模型
-
启动 TensorBoard
tensorboard --logdir=/assets/log --port=8080 -
运行训练脚本
python main_1v.py --epoch 200 --mode train --batch-size 16
3. 应用案例和最佳实践
3.1 机器人抓取
PointNetGPD 可以应用于机器人抓取任务中,通过从点云数据中直接检测抓取配置,帮助机器人实现自主抓取。以下是一个简单的应用案例:
-
启动感知节点
cd $PointNetGPD_FOLDER/dex-net/apps python kinect2grasp.py --cuda --gpu 0 --model_type 750 -
执行抓取
使用 ROS 控制机器人执行抓取:
roslaunch panda_go_grasp go_grasp.launch
3.2 最佳实践
- 数据集准备:确保数据集的质量和多样性,以提高模型的泛化能力。
- 超参数调优:根据具体任务调整训练超参数,如学习率、批量大小等。
- 模型评估:在训练过程中使用验证集评估模型性能,及时调整模型结构和参数。
4. 典型生态项目
4.1 Dex-Net
Dex-Net 是一个用于机器人抓取的深度学习框架,与 PointNetGPD 结合使用可以进一步提升抓取性能。
4.2 MeshPy
MeshPy 是一个用于处理 3D 网格数据的 Python 库,PointNetGPD 使用 MeshPy 进行点云数据的预处理。
4.3 PCL (Point Cloud Library)
PCL 是一个用于处理点云数据的开源库,PointNetGPD 使用 PCL 进行点云数据的处理和可视化。
通过结合这些生态项目,可以进一步提升 PointNetGPD 在机器人抓取任务中的表现。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
【免费下载】 JDK 8 和 JDK 17 无缝切换及 IDEA 和 【maven下载安装与配置】 DirectX修复工具【亲测免费】 让经典焕发新生:使用 Visual Studio Code 作为 Visual C++ 6.0 编辑器【亲测免费】 抖音直播助手:douyin-live-go 项目推荐【亲测免费】 ActivityManager 使用指南【亲测免费】 使用Docker-Compose部署达梦DEM管理工具(适用于Mac M1系列)【免费下载】 Windows Keepalived:Windows系统上的高可用性解决方案 Matlab物理建模仿真利器——Simscape及其编程语言Simscape Language学习资源推荐【亲测免费】 Windows10安装Hadoop 3.1.3详细教程【亲测免费】 开源项目 gkd-kit/gkd 常见问题解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20