首页
/ Trieve项目中基于LLM的混合搜索组件设计与实现

Trieve项目中基于LLM的混合搜索组件设计与实现

2025-07-04 21:50:41作者:温玫谨Lighthearted

在当今信息爆炸的时代,如何高效地从海量数据中检索出最相关的结果一直是搜索技术面临的重大挑战。Trieve项目中的搜索组件通过引入大语言模型(LLM)进行结果重排序,实现了更智能的混合搜索体验。本文将深入解析这一创新设计的实现原理和技术细节。

混合搜索架构概述

Trieve的混合搜索系统采用了经典的两阶段检索架构:

  1. 初步检索阶段:使用传统搜索引擎快速获取候选结果集
  2. 智能重排序阶段:利用LLM对初步结果进行相关性评估和重新排序

这种架构既保留了传统搜索的高效性,又通过LLM的语义理解能力提升了结果质量。

LLM重排序核心实现

重排序模块的核心是一个精心设计的提示工程系统,主要包含以下关键组件:

1. 输入数据构造

系统会为每个候选产品构造一个包含多维特征的JSON对象:

{
  "query": "用户搜索词",
  "chunk_html": "产品描述HTML片段",
  "tag_set": ["产品标签"],
  "price": 产品价格,
  "link": "产品链接"
}

2. 提示词设计

提示模板采用清晰的指令式结构,包含:

  • 用户原始查询词
  • 可选的额外重排序上下文(llm_rerank_context)
  • 格式化后的产品特征数据

示例提示:

Rank the relevance of this products given the following query [搜索词]. [额外上下文]
[产品特征JSON]

3. 函数调用设计

系统定义了一个标准化的工具函数接口:

interface RankingFunction {
  name: "rank_products";
  parameters: {
    relevance: "high" | "medium" | "low";
  };
}

这种设计确保了LLM输出的结构化,便于后续程序化处理。

结果处理策略

系统采用分级处理策略:

  • 高相关性(high):优先展示
  • 中等相关性(medium):次级展示或折叠显示
  • 低相关性(low):直接过滤

这种策略在召回率和精准度之间取得了良好平衡。

技术优势分析

  1. 多模态特征融合:同时考虑文本内容、结构化标签和数值特征
  2. 动态上下文感知:通过llm_rerank_context实现场景化排序
  3. 可解释性:明确的三个等级划分便于结果分析和调试

实际应用考量

在实际部署时,开发者需要注意:

  • 延迟控制:LLM调用可能成为性能瓶颈,建议采用批处理
  • 成本优化:可对初步检索结果进行截断,减少LLM处理量
  • 结果一致性:需要设计适当的温度参数控制LLM输出稳定性

未来演进方向

这一架构具有很好的扩展性,未来可以考虑:

  1. 引入个性化排序因素
  2. 支持多维度评分体系
  3. 实现端到端的学习排序(LTR)模型

Trieve项目的这一创新实践为搜索系统智能化提供了有价值的参考架构,展示了LLM与传统搜索技术融合的巨大潜力。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
198
279
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K