Trieve项目中基于LLM的混合搜索组件设计与实现
2025-07-04 04:28:33作者:温玫谨Lighthearted
在当今信息爆炸的时代,如何高效地从海量数据中检索出最相关的结果一直是搜索技术面临的重大挑战。Trieve项目中的搜索组件通过引入大语言模型(LLM)进行结果重排序,实现了更智能的混合搜索体验。本文将深入解析这一创新设计的实现原理和技术细节。
混合搜索架构概述
Trieve的混合搜索系统采用了经典的两阶段检索架构:
- 初步检索阶段:使用传统搜索引擎快速获取候选结果集
- 智能重排序阶段:利用LLM对初步结果进行相关性评估和重新排序
这种架构既保留了传统搜索的高效性,又通过LLM的语义理解能力提升了结果质量。
LLM重排序核心实现
重排序模块的核心是一个精心设计的提示工程系统,主要包含以下关键组件:
1. 输入数据构造
系统会为每个候选产品构造一个包含多维特征的JSON对象:
{
"query": "用户搜索词",
"chunk_html": "产品描述HTML片段",
"tag_set": ["产品标签"],
"price": 产品价格,
"link": "产品链接"
}
2. 提示词设计
提示模板采用清晰的指令式结构,包含:
- 用户原始查询词
- 可选的额外重排序上下文(llm_rerank_context)
- 格式化后的产品特征数据
示例提示:
Rank the relevance of this products given the following query [搜索词]. [额外上下文]
[产品特征JSON]
3. 函数调用设计
系统定义了一个标准化的工具函数接口:
interface RankingFunction {
name: "rank_products";
parameters: {
relevance: "high" | "medium" | "low";
};
}
这种设计确保了LLM输出的结构化,便于后续程序化处理。
结果处理策略
系统采用分级处理策略:
- 高相关性(high):优先展示
- 中等相关性(medium):次级展示或折叠显示
- 低相关性(low):直接过滤
这种策略在召回率和精准度之间取得了良好平衡。
技术优势分析
- 多模态特征融合:同时考虑文本内容、结构化标签和数值特征
- 动态上下文感知:通过llm_rerank_context实现场景化排序
- 可解释性:明确的三个等级划分便于结果分析和调试
实际应用考量
在实际部署时,开发者需要注意:
- 延迟控制:LLM调用可能成为性能瓶颈,建议采用批处理
- 成本优化:可对初步检索结果进行截断,减少LLM处理量
- 结果一致性:需要设计适当的温度参数控制LLM输出稳定性
未来演进方向
这一架构具有很好的扩展性,未来可以考虑:
- 引入个性化排序因素
- 支持多维度评分体系
- 实现端到端的学习排序(LTR)模型
Trieve项目的这一创新实践为搜索系统智能化提供了有价值的参考架构,展示了LLM与传统搜索技术融合的巨大潜力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
344
Ascend Extension for PyTorch
Python
235
268
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
62
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669