Trieve项目中基于LLM的混合搜索组件设计与实现
2025-07-04 04:28:33作者:温玫谨Lighthearted
在当今信息爆炸的时代,如何高效地从海量数据中检索出最相关的结果一直是搜索技术面临的重大挑战。Trieve项目中的搜索组件通过引入大语言模型(LLM)进行结果重排序,实现了更智能的混合搜索体验。本文将深入解析这一创新设计的实现原理和技术细节。
混合搜索架构概述
Trieve的混合搜索系统采用了经典的两阶段检索架构:
- 初步检索阶段:使用传统搜索引擎快速获取候选结果集
- 智能重排序阶段:利用LLM对初步结果进行相关性评估和重新排序
这种架构既保留了传统搜索的高效性,又通过LLM的语义理解能力提升了结果质量。
LLM重排序核心实现
重排序模块的核心是一个精心设计的提示工程系统,主要包含以下关键组件:
1. 输入数据构造
系统会为每个候选产品构造一个包含多维特征的JSON对象:
{
"query": "用户搜索词",
"chunk_html": "产品描述HTML片段",
"tag_set": ["产品标签"],
"price": 产品价格,
"link": "产品链接"
}
2. 提示词设计
提示模板采用清晰的指令式结构,包含:
- 用户原始查询词
- 可选的额外重排序上下文(llm_rerank_context)
- 格式化后的产品特征数据
示例提示:
Rank the relevance of this products given the following query [搜索词]. [额外上下文]
[产品特征JSON]
3. 函数调用设计
系统定义了一个标准化的工具函数接口:
interface RankingFunction {
name: "rank_products";
parameters: {
relevance: "high" | "medium" | "low";
};
}
这种设计确保了LLM输出的结构化,便于后续程序化处理。
结果处理策略
系统采用分级处理策略:
- 高相关性(high):优先展示
- 中等相关性(medium):次级展示或折叠显示
- 低相关性(low):直接过滤
这种策略在召回率和精准度之间取得了良好平衡。
技术优势分析
- 多模态特征融合:同时考虑文本内容、结构化标签和数值特征
- 动态上下文感知:通过llm_rerank_context实现场景化排序
- 可解释性:明确的三个等级划分便于结果分析和调试
实际应用考量
在实际部署时,开发者需要注意:
- 延迟控制:LLM调用可能成为性能瓶颈,建议采用批处理
- 成本优化:可对初步检索结果进行截断,减少LLM处理量
- 结果一致性:需要设计适当的温度参数控制LLM输出稳定性
未来演进方向
这一架构具有很好的扩展性,未来可以考虑:
- 引入个性化排序因素
- 支持多维度评分体系
- 实现端到端的学习排序(LTR)模型
Trieve项目的这一创新实践为搜索系统智能化提供了有价值的参考架构,展示了LLM与传统搜索技术融合的巨大潜力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319