首页
/ ASR-Study 项目教程

ASR-Study 项目教程

2024-09-18 05:13:53作者:魏侃纯Zoe

1. 项目介绍

ASR-Study 是一个使用 Keras 和 TensorFlow 开发的端到端自动语音识别(ASR)系统。该项目旨在训练一个基于字符的全神经巴西葡萄牙语语音识别模型。ASR-Study 使用了四个数据集进行训练:CSLU Spoltech (LDC2006S16)、Sid、VoxForge 和 LapsBM1.4。其中,CSLU 数据集是付费的。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 2.7 以及以下依赖库:

  • Numpy
  • Scipy
  • Pyyaml
  • HDF5
  • Unidecode
  • Librosa
  • TensorFlow
  • Keras

2.2 下载数据集

你可以使用提供的脚本下载免费的巴西葡萄牙语语音数据集:

cd data
sh download_datasets.sh

2.3 数据预处理

将下载的数据集预处理成 hdf5 文件:

python -m extras.make_dataset --parser brsd --input_parser mfcc

2.4 训练网络

使用 train.py 脚本训练网络。默认参数训练:

python train.py --dataset datasets/brsd/data.h5

2.5 模型评估

下载预训练模型并评估其性能:

mkdir models
sh download_brsmv1.sh
python eval.py --model models/brsmv1.h5 --dataset datasets/brsd/data.h5

2.6 预测输出

使用训练好的模型进行预测:

python predict.py --model MODEL --dataset DATASET

3. 应用案例和最佳实践

3.1 应用案例

ASR-Study 可以应用于多种场景,如语音助手、语音翻译、语音搜索等。通过训练不同的语言模型,可以实现多语言支持。

3.2 最佳实践

  • 数据集选择:选择高质量、多样化的数据集进行训练,以提高模型的泛化能力。
  • 超参数调优:通过调整学习率、批量大小等超参数,优化模型性能。
  • 模型集成:结合多个模型的预测结果,提高整体识别准确率。

4. 典型生态项目

4.1 Kaldi

Kaldi 是一个广泛使用的语音识别工具包,提供了丰富的功能和工具,可以与 ASR-Study 结合使用,进一步提升语音识别性能。

4.2 TensorFlow

TensorFlow 是 ASR-Study 的核心框架,提供了强大的计算能力和丰富的深度学习工具,支持模型的训练和部署。

4.3 Librosa

Librosa 是一个用于音频和音乐分析的 Python 库,可以用于音频数据的预处理和特征提取,与 ASR-Study 配合使用,提高数据处理效率。

通过以上模块的介绍和实践,你可以快速上手 ASR-Study 项目,并将其应用于实际的语音识别任务中。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5