3M-ASR 开源项目使用教程
2024-09-22 18:12:28作者:董灵辛Dennis
1. 项目介绍
3M-ASR(Multi-loss, Multi-path, and Multi-level Neural Networks for speech recognition)是由腾讯AI实验室开发的一个基于Mixture-of-Experts(MoE)模型的端到端语音识别系统。该项目旨在构建一个高效的大规模语音识别系统,通过多损失、多路径和多层次神经网络来提高模型的训练效率和识别精度。
3M-ASR的核心技术包括:
- Mixture-of-Experts (MoE):通过MoE模型实现大规模语音识别任务,保持高精度的同时大幅提高训练效率。
- FastMoE库:支持PyTorch中的MoE模型训练,处理复杂的专家混合网络。
- Conformer结构:借鉴WeNet的部分代码,实现高效的语音识别模型。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.8
- PyTorch 1.9.0
- CUDA 11.1
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/tencent-ailab/3m-asr.git cd 3m-asr -
创建并激活Conda环境:
conda create -n moe python=3.8 conda activate moe -
安装依赖:
pip install -r requirements.txt conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge -
安装FastMoE: 按照
fastmoe目录下的说明安装FastMoE库。
2.3 运行示例
项目中提供了基于WenetSpeech数据集的训练和测试脚本。你可以通过以下命令启动训练:
python trainer/train.py --config examples/wenetspeech/conformer_moe.yaml
3. 应用案例和最佳实践
3.1 智能助手
3M-ASR技术可以应用于智能助手,实现实时、准确的语音识别,提升用户体验。例如,用户可以通过语音指令控制智能家居设备,查询天气、设置提醒等。
3.2 自动驾驶
在自动驾驶系统中,准确的语音识别可以帮助驾驶员无需分神操作,保证行车安全。例如,驾驶员可以通过语音指令进行导航、播放音乐等操作。
3.3 远程医疗
在远程医疗场景中,3M-ASR可以实现医生与患者之间的实时语音交流,提高诊断效率。例如,医生可以通过语音记录患者的病情,系统自动生成病历。
4. 典型生态项目
4.1 WeNet
WeNet是一个开源的端到端语音识别工具包,3M-ASR借鉴了WeNet的部分代码,用于实现Conformer结构和数据处理,确保模型的高效运行。
4.2 FastMoE
FastMoE是一个高度优化的库,支持PyTorch中的MoE模型训练。3M-ASR使用FastMoE来处理复杂的专家混合网络,提高训练效率。
通过以上步骤,你可以快速启动并使用3M-ASR项目,实现高效的语音识别系统。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873