Supersonic项目中的语义层执行优化:跳过重复翻译阶段
在Supersonic项目的Headless模式实现中,我们发现了一个可以显著提升查询性能的优化点。当前系统在处理Chat调用时,会先执行解析阶段(performParsing),然后再执行执行阶段(performExecution)。然而,在解析阶段系统已经通过SemanticTranslator获取了最终可执行的SQL语句,这种情况下执行阶段再次进行翻译就显得多余了。
现有流程分析
现有流程中,Headless模式处理查询请求时遵循以下步骤:
-
解析阶段(performParsing):系统接收请求后,首先进行语法解析和语义分析,在这个过程中已经通过SemanticTranslator将高级查询转换为可直接执行的SQL语句。
-
执行阶段(performExecution):尽管解析阶段已经生成了可执行SQL,系统仍会再次调用SemanticTranslator进行翻译,然后才执行查询。
这种设计导致了不必要的性能开销,特别是在高并发场景下,重复的翻译操作会显著增加系统负载和响应时间。
优化方案设计
针对这一问题,我们提出了以下优化方案:
-
结果缓存机制:在解析阶段生成的最终SQL应该被缓存起来,在执行阶段直接复用。
-
条件判断逻辑:SemanticLayerService在执行queryByReq方法时,应当首先检查输入中是否已经包含可执行SQL。如果存在,则跳过SemanticTranslator的调用流程。
-
状态传递优化:确保解析阶段生成的SQL能够完整传递到执行阶段,避免信息丢失。
实现细节
具体实现上,我们需要:
-
在解析阶段结束时,将生成的SQL语句存储在请求上下文中。
-
修改SemanticLayerService的queryByReq方法,增加前置检查逻辑:
if (request.containsExecutableSql()) { return executeDirectly(request.getSql()); } -
确保所有相关的数据结构和接口都支持这种优化路径,保持向后兼容性。
预期收益
这项优化将带来以下好处:
-
性能提升:减少一次完整的翻译过程,显著降低查询延迟。
-
资源节约:降低CPU使用率,特别是在高负载情况下效果更为明显。
-
架构简化:使数据处理流程更加直观和高效。
注意事项
在实施这项优化时,需要考虑以下方面:
-
缓存一致性:确保缓存的SQL与最新数据模型保持同步。
-
错误处理:当直接执行缓存的SQL失败时,应有回退机制。
-
内存管理:对于大型查询,需要注意缓存SQL的内存占用。
这项优化已经在Supersonic项目中得到实现,通过减少不必要的计算步骤,显著提升了系统的整体性能表现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00