CogView2 项目使用教程
2024-09-16 00:01:11作者:胡易黎Nicole
1. 项目目录结构及介绍
CogView2 项目的目录结构如下:
CogView2/
├── assets/
├── comp_pipeline/
├── sr_pipeline/
├── .gitignore
├── LICENSE
├── README.md
├── cluster_label.npy
├── cog.yaml
├── coglm_strategy.py
├── cogview2_completion.py
├── cogview2_text2image.py
├── input.txt
├── input_comp.txt
├── predict.py
├── pretrain_coglm.py
├── requirements.txt
├── text2image.sh
├── text_guided_completion.sh
目录结构介绍
- assets/: 存放项目相关的资源文件。
- comp_pipeline/: 包含图像生成的组件流水线。
- sr_pipeline/: 包含超分辨率处理的流水线。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- cluster_label.npy: 聚类标签文件。
- cog.yaml: 项目配置文件。
- coglm_strategy.py: CogLM 策略脚本。
- cogview2_completion.py: 文本引导图像补全脚本。
- cogview2_text2image.py: 文本到图像生成脚本。
- input.txt: 输入文本文件。
- input_comp.txt: 文本引导补全的输入文件。
- predict.py: 预测脚本。
- pretrain_coglm.py: CogLM 预训练脚本。
- requirements.txt: 项目依赖文件。
- text2image.sh: 文本到图像生成的启动脚本。
- text_guided_completion.sh: 文本引导图像补全的启动脚本。
2. 项目启动文件介绍
text2image.sh
text2image.sh 是用于启动文本到图像生成的脚本。使用方法如下:
./text2image.sh --input-source input.txt --output-path output_folder --batch-size 4 --max-inference-batch-size 2 --device 0
参数说明
--input-source: 输入文本文件路径或 "interactive" 启动交互模式。--output-path: 输出结果的文件夹路径。--batch-size: 每个查询生成的样本数量。--max-inference-batch-size: 每次前向传播的最大批处理大小,减少以避免内存溢出。--device: 运行在哪个 GPU 上。
text_guided_completion.sh
text_guided_completion.sh 是用于启动文本引导图像补全的脚本。使用方法如下:
./text_guided_completion.sh --input-source input_comp.txt
参数说明
--input-source: 输入文件路径,格式为text image_path h0 w0 h1 w1,其中所有分隔符为 TAB。
3. 项目配置文件介绍
cog.yaml
cog.yaml 是项目的配置文件,包含了模型的各种参数设置。以下是部分配置示例:
model:
name: CogView2
parameters:
- 6B
- 9B
- 9B
style: mainbody
device: 0
max-inference-batch-size: 2
配置项说明
- model.name: 模型名称。
- model.parameters: 模型参数设置。
- model.style: 生成图像的风格。
- model.device: 运行设备。
- model.max-inference-batch-size: 最大推理批处理大小。
通过以上配置,可以灵活调整模型的运行参数,以适应不同的硬件环境和需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
227
95
暂无简介
Dart
727
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
285
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
702
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
442
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19