Gleam 项目使用教程
2024-09-24 05:39:42作者:胡易黎Nicole
1. 项目介绍
Gleam 是一个用于创建交互式数据可视化的 Python 库。它允许用户使用 Python 编写代码,而无需了解 HTML 或 JavaScript,即可生成具有交互功能的 Web 可视化界面。Gleam 的设计灵感来自于 R 语言中的 Shiny 包,旨在帮助用户轻松地创建和分享数据分析结果。
2. 项目快速启动
安装 Gleam
首先,确保你已经安装了 Python 环境。然后使用 pip 安装 Gleam:
pip install gleam
创建一个简单的交互式可视化
以下是一个简单的示例,展示如何使用 Gleam 创建一个交互式散点图。
from gleam import Page, panels
from wtforms import fields
from ggplot import *
# 定义输入面板
class ScatterInput(panels.Inputs):
title = fields.StringField(label="Title of plot:")
yvar = fields.SelectField(label="Y axis", choices=[("beef", "Beef"), ("pork", "Pork")])
smoother = fields.BooleanField(label="Smoothing Curve")
# 定义输出面板
class ScatterPlot(panels.Plot):
name = "Scatter"
def plot(self, inputs):
p = ggplot(meat, aes(x='date', y=inputs.yvar))
if inputs.smoother:
p = p + stat_smooth(color="blue")
p = p + geom_point() + ggtitle(inputs.title)
return p
# 创建页面
class ScatterPage(Page):
input = ScatterInput()
output = ScatterPlot()
# 运行应用
ScatterPage.run()
运行上述代码后,你可以在浏览器中访问 http://127.0.0.1:5000/
查看生成的交互式可视化界面。
3. 应用案例和最佳实践
应用案例
Gleam 可以用于各种数据分析和可视化任务,例如:
- 数据探索:通过交互式图表快速探索数据集。
- 报告生成:创建动态报告,用户可以根据需要调整参数。
- 教学工具:在教学中使用,帮助学生理解数据分析过程。
最佳实践
- 模块化设计:将输入和输出模块化,便于维护和扩展。
- 使用合适的图表库:Gleam 支持多种 Python 图表库,选择最适合你需求的库。
- 用户友好的界面:设计简洁直观的用户界面,方便用户操作。
4. 典型生态项目
Gleam 作为一个数据可视化工具,可以与其他 Python 数据处理和分析库结合使用,例如:
- Pandas:用于数据清洗和预处理。
- Matplotlib 和 Seaborn:用于静态图表的生成。
- Plotly:用于创建更复杂的交互式图表。
通过结合这些工具,你可以构建一个完整的数据分析和可视化工作流。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5