Prodigy 开源项目教程
2024-08-18 06:18:46作者:郜逊炳
项目介绍
Prodigy 是一个高效的注释工具,专为机器学习模型训练数据集的快速迭代设计。它由 Explosion 开发,旨在帮助研究人员和开发者通过交互式注释过程快速构建和优化数据集。Prodigy 支持多种数据类型,包括文本、图像和音频,并提供了丰富的注释界面和功能,以提高注释效率和质量。
项目快速启动
安装 Prodigy
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 Prodigy:
pip install prodigy
创建一个简单的文本分类任务
- 创建一个新的 Prodigy 数据集:
prodigy dataset my_text_classification "My Text Classification Dataset"
-
准备你的文本数据。假设你有一个包含文本数据的文件
texts.jsonl,每行是一个 JSON 对象,包含一个text字段。 -
启动 Prodigy 注释界面:
prodigy textcat.manual my_text_classification texts.jsonl --label POSITIVE,NEGATIVE
- 打开浏览器,访问
http://localhost:8080,开始注释你的文本数据。
应用案例和最佳实践
文本分类
Prodigy 可以用于快速构建文本分类数据集。例如,你可以使用 textcat.manual 组件来手动注释文本,并使用 textcat.teach 组件来通过主动学习迭代地改进分类模型。
命名实体识别
对于命名实体识别任务,Prodigy 提供了 ner.manual 和 ner.teach 组件。你可以手动注释实体,或者使用预训练模型来指导注释过程。
图像分类
Prodigy 还支持图像注释任务。使用 image.manual 组件,你可以手动标记图像中的对象,并创建训练数据集。
典型生态项目
spaCy
Prodigy 与 spaCy 紧密集成,spaCy 是一个强大的自然语言处理库。你可以使用 Prodigy 生成的数据集来训练 spaCy 模型,并进行进一步的 NLP 任务。
Transformers
Prodigy 也可以与 Hugging Face 的 Transformers 库结合使用,用于训练和优化基于 Transformer 的模型,如 BERT 和 GPT。
通过这些集成,Prodigy 提供了一个完整的端到端解决方案,从数据注释到模型训练和部署。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328