more-itertools项目中的consume和ilen函数性能优化探讨
2025-06-17 08:49:26作者:冯爽妲Honey
在Python的more-itertools项目中,开发者们一直在寻找优化代码性能的方法。最近,社区中提出了一个关于consume和ilen函数性能优化的有趣讨论。
性能优化思路
核心优化思路是预先创建一个deque(maxlen=0).extend对象,在模块加载时就初始化好,然后在consume和ilen函数中重复使用这个预创建的对象,而不是每次调用时都新建一个deque对象。
根据性能测试数据显示,创建一个新的deque对象大约需要300纳秒,而直接使用预创建的extend方法仅需26纳秒。这种优化对于高频调用这些函数的场景尤其有价值。
技术实现方案
优化方案的具体实现如下:
- 在模块级别预先创建并存储一个deque的extend方法:
_consume_all = deque(maxlen=0).extend
- 修改
consume函数实现:
def consume(iterator, n=None):
if n is None:
_consume_all(iterator)
else:
next(islice(iterator, n, n), None)
- 修改
ilen函数实现:
def ilen(iterable):
counter = count()
_consume_all(zip(iterable, counter))
return next(counter)
权衡考量
这种优化属于典型的"空间换时间"策略,它带来了几个方面的权衡:
- 启动时间:模块加载时需要额外时间创建这个deque对象
- 内存占用:这个deque对象会一直驻留在内存中无法回收
- 实际收益:虽然单次调用节省了约300纳秒,但对于不频繁调用的场景收益有限
后续发展
有趣的是,在PR #894合并后,ilen函数已经不再使用deque实现,这使得这个优化方案的价值有所降低。这也提醒我们,性能优化需要随着代码演进而不断重新评估。
总结
这个优化案例展示了Python性能调优的一个经典模式:通过预计算和缓存来减少重复的对象创建开销。虽然最终由于代码演变使得这个特定优化不再完全适用,但它所体现的优化思路仍然值得学习。在实际项目中,我们需要综合考虑优化带来的收益和成本,并根据代码的演变不断调整优化策略。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873