mcp-atlassian项目v0.1.15版本发布:全面增强Jira集成能力
mcp-atlassian是一个专注于Atlassian系列产品(特别是Jira)集成与扩展的开源工具库。该项目旨在为开发者提供一套高效、灵活的API和工具集,简化与Jira等Atlassian产品的交互过程。最新发布的v0.1.15版本带来了多项重要功能增强和问题修复,显著提升了Jira集成的深度和广度。
核心功能增强
全面的Epic关联支持
新版本实现了对Jira中Epic问题的完整支持。开发团队现在可以通过API轻松创建Epic,并将其与其他问题关联。这一功能特别适合采用敏捷开发方法的团队,能够帮助他们更好地组织和管理用户故事与任务。
该实现考虑了不同Jira实例间的字段差异,采用了动态字段发现机制,确保在各种Jira配置环境下都能正确识别和处理Epic相关字段。这种设计大大提高了代码的适应性和可靠性。
双向Jira-Markdown转换引擎
v0.1.15引入了一个强大的双向转换引擎,能够在Jira标记语言和标准Markdown之间进行无缝转换。这一功能解决了长期以来困扰开发者的内容格式兼容性问题,使得:
- 从Jira导出的内容可以完美呈现为Markdown格式
 - 使用Markdown编写的内容能够正确导入到Jira中
 - 保持了所有重要的格式元素,包括列表、表格、代码块等
 
转换引擎经过精心设计,能够正确处理各种边界情况,确保内容在转换过程中不会丢失或变形。
Jira Server/Data Center支持
此版本扩展了对Jira部署模式的支持,新增了对Jira Server和Data Center版本的完整兼容。这意味着企业级用户现在可以:
- 通过命令行参数灵活配置本地部署的Jira实例
 - 使用相同的API接口访问云版和本地版Jira
 - 无缝切换不同部署环境
 
这一改进使得mcp-atlassian能够满足更广泛的企业需求,特别是在数据安全和合规性要求较高的场景下。
关键问题修复与优化
多字节字符处理改进
修复了JSON API响应中多字节字符(如中文、日文等)被错误转义的问题。现在API能够正确处理各种语言的文本内容,确保国际化团队使用时不会遇到字符显示异常。
测试框架增强
测试套件进行了全面升级,包括:
- 改进了mock数据装置,使测试更贴近真实场景
 - 增加了对边缘案例的测试覆盖
 - 优化了测试执行效率
 
这些改进提升了代码的稳定性和可靠性,为后续功能开发奠定了更坚实的基础。
新增实用工具
工作时间记录管理
新版本引入了一套完整的Jira工作时间记录(worklog)管理工具,开发者可以通过这些工具:
- 精确记录任务耗时
 - 管理时间估算
 - 生成工作时间报告
 - 分析团队工作效率
 
这些工具特别适合需要精确跟踪项目进度和资源投入的团队,能够帮助他们更好地进行项目规划和资源分配。
总结
mcp-atlassian v0.1.15版本通过多项重要功能增强和问题修复,显著提升了与Jira集成的深度和广度。无论是Epic管理、内容格式转换,还是对本地部署Jira的支持,都体现了项目团队对开发者实际需求的深刻理解。这些改进使得mcp-atlassian成为一个更成熟、更全面的Atlassian生态系统集成解决方案,值得开发者关注和采用。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00