Tikv内存分配指标不一致问题分析
2025-05-14 02:09:07作者:宣聪麟
在Tikv数据库的性能监控中,内存分配指标是诊断系统性能问题的重要依据。近期发现了一个关于内存分配指标显示不一致的问题,值得深入分析其原理和影响。
问题现象
监控数据显示,从"allocation bytes rate"指标可以清楚地观察到内存主要分配在"sst-importer"和"apply"线程上。然而与此同时,"mapped allocation per thread"指标却显示高内存使用出现在"sched-worker-high"和"unified-read-pool"线程上,而这些线程当时实际上并未被使用。
这种指标不一致的情况会给运维人员判断系统真实内存使用情况带来困扰,可能导致错误的诊断结论。
技术背景
Tikv作为分布式KV存储引擎,采用多线程架构处理不同任务。内存分配监控主要通过两种机制实现:
-
分配字节速率(allocation bytes rate):记录各线程实际分配内存的速率,反映实时内存分配情况。
-
映射分配每线程(mapped allocation per thread):统计各线程映射的内存区域大小,反映线程可能使用的内存总量。
在正常情况下,这两个指标应该呈现一致的趋势,共同反映系统的内存使用状况。
问题原因
深入分析代码后发现,该问题源于v7.5版本中未包含一个关键的内存监控功能改进。具体来说,在后续版本中引入的线程内存跟踪优化功能未被反向移植到v7.5分支。
这种功能缺失导致:
- 内存映射统计无法准确关联到实际分配线程
- 闲置线程可能错误地显示高内存占用
- 活跃线程的内存使用可能被低估
影响范围
该问题主要影响v7.5版本的用户。在后续版本(v8.1和v8.5)中,由于已经包含了完整的内存监控功能,不会出现此类指标不一致的情况。
解决方案
对于仍在使用v7.5版本的用户,建议采取以下措施:
- 升级到包含完整内存监控功能的版本(v8.1或更高)
- 如果必须使用v7.5,可以结合其他监控指标综合判断内存使用情况
- 重点关注"allocation bytes rate"指标,它更能反映实时内存分配
最佳实践
在日常监控中,建议运维人员:
- 同时关注多种内存指标,进行交叉验证
- 建立基线数据,识别异常波动
- 结合线程活动状态分析内存使用
- 定期升级到稳定版本,获取完整监控能力
通过以上方法,可以有效避免因监控指标不一致导致的误判,确保对系统内存状况有准确的理解。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
307
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
259
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
652
仓颉编程语言运行时与标准库。
Cangjie
141
878
仓颉编译器源码及 cjdb 调试工具。
C++
134
867