probe-rs 0.28.0版本发布:嵌入式调试工具的全面升级
probe-rs是一个功能强大的嵌入式系统调试工具链,为开发者提供了从芯片编程到实时调试的全套解决方案。最新发布的0.28.0版本带来了多项重要改进和新特性,显著提升了调试体验和功能覆盖范围。
核心功能增强
本次更新在远程调试能力方面取得了重大突破,新增了远程服务器/客户端实现,使得开发者可以通过网络连接进行远程调试操作。调试器功能也得到大幅扩展,新增了info break、info reg、clear等常用调试命令,并优化了backtrace命令(现简写为bt),使其输出更加简洁高效。
在芯片支持方面,0.28.0版本新增了对Texas Instruments MSPM0系列、NXP MCXA系列、Microchip MEC172x系列以及Infineon PSOC 62家族等众多新型MCU的支持。特别是对RISC-V和Xtensa架构的扩展支持,使得CMSIS-DAP探头现在可以用于这些架构的调试。
调试体验优化
新版本引入了配置预设功能,开发者可以在配置文件中定义多组参数值,并通过--preset选项快速切换不同配置场景。调试过程中的异常处理也更加完善,新增了catch-hardfault和catch-reset选项,默认会捕获复位和硬件错误,大幅简化了故障调试流程。
针对嵌入式开发中常见的RTT(实时传输)功能,本次更新解决了通道名称显示问题,并优化了大消息处理能力,使得defmt日志输出更加稳定可靠。新增的--target-output-file选项允许将目标输出直接保存到文件或命名管道,方便日志收集和分析。
性能与稳定性提升
ESP32系列芯片的闪存算法现在会使用最高CPU时钟频率,显著提高了编程速度。针对STM32系列,修复了默认闪存算法冲突问题,并新增了OTP内存支持。在底层协议层面,优化了SWD接口实现,采用更高效的枚举流传输方式。
新引入的Probe::profile功能利用ARM DWT程序计数器采样寄存器(PCSR)实现了精确的性能分析能力,帮助开发者优化关键代码路径。针对批量擦除的EFM32xG2设备,实现了定制复位序列,解决了编程失败的问题。
开发者工具链完善
probe-rs工具链现在提供了更灵活的芯片选择机制,支持通过设备选择器过滤探头列表。目标生成工具(target-gen)新增了速度协议设置选项,方便自动化测试场景。调试器配置中新增了verifyBeforeFlashing和verifyAfterFlashing选项,提供了更严格的编程验证流程。
对于使用Homebrew的macOS开发者,现在可以通过brew直接安装probe-rs、rtthost和target-gen等工具,大大简化了环境配置过程。跨平台支持方面,提供了从Apple Silicon到x64 Windows的完整预编译二进制包。
probe-rs 0.28.0版本的这些改进,使得嵌入式开发者在面对复杂调试场景时拥有更强大的工具支持,从底层芯片操作到高层调试功能都得到了全面提升,进一步巩固了其作为现代嵌入式开发首选工具链的地位。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00