Actions Runner Controller 项目中的 Helm 卸载与 CRD 残留问题解析
在 Kubernetes 集群中使用 Helm 管理 Actions Runner Controller (ARC) 时,用户可能会遇到一个典型问题:通过 Helm uninstall 命令卸载控制器后,相关的 CustomResourceDefinitions (CRDs) 资源仍然保留在集群中。这种现象并非 ARC 特有的缺陷,而是源于 Helm 本身对 CRD 的生命周期管理机制。
技术背景
CRD 作为 Kubernetes 中扩展 API 的核心机制,其设计初衷是确保集群中的自定义资源类型具有持久性。Helm 出于安全考虑,在 chart 卸载时默认不会删除 CRD,这是为了避免误操作导致关键资源丢失。这种保守策略在 ARC 场景中表现为:即使完整执行了控制器的 Helm 卸载流程,以下 CRD 仍会保留:
- autoscalinglisteners.actions.github.com
- autoscalingrunnersets.actions.github.com
- ephemeralrunners.actions.github.com
- ephemeralrunnersets.actions.github.com
解决方案实践
对于需要完整清理的场景,建议采用分步操作:
- 首先卸载 runner-scale-set chart
- 随后卸载 controller chart
- 最后手动清理残留 CRD
具体命令示例:
kubectl delete crd autoscalingrunnersets.actions.github.com
kubectl delete crd ephemeralrunnersets.actions.github.com
# 其他相关CRD...
升级场景的特殊处理
当用户需要升级 ARC 版本时,官方文档明确要求必须先执行完整卸载。这是因为新旧版本间的 CRD 可能存在不兼容变更,特别是当 minor 版本号变化时可能包含 breaking changes。这种设计虽然增加了操作复杂度,但确保了版本间转换的可靠性。
进阶注意事项
在复杂部署环境中,用户可能还会遇到 namespace 卡在 Terminating 状态的情况。这通常是由于 finalizers 未清理导致的,此时需要手动移除相关资源的 finalizer 字段。例如通过 kubectl edit 命令清理 autoscalingrunnersets 或 rolebindings 等资源的 finalizers。
架构设计思考
从系统架构角度看,ARC 团队选择不维护多版本 CRD 兼容性是基于安全权衡的结果。虽然这种设计增加了升级复杂度,但避免了引入 mutating webhook 可能带来的安全隐患。对于需要自动化部署的场景,建议将 CRD 清理和安装步骤纳入 CI/CD 流程统一管理。
这种设计决策反映了 Kubernetes 生态中常见的可靠性优先原则,开发者在享受自定义资源强大功能的同时,也需要理解其背后的运维约束条件。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00