Actions Runner Controller版本升级问题分析与解决方案
问题背景
在使用Actions Runner Controller管理自托管运行器时,用户遇到了一个关于版本升级的典型问题。当用户将gha-runner-scale-set组件从0.8.0升级到0.8.1版本后,控制器日志显示版本不匹配,并自动删除了autoscalinglistener、autoscalingrunnerset、ephemeral-runner-controller和ephemeralrunnerset等关键资源。
问题现象
用户最初的操作步骤是先升级运行器组件(gha-runner-scale-set)到0.8.1,然后升级控制器到0.8.1。这种操作顺序导致了以下现象:
- 控制器检测到版本不匹配后,自动删除了相关资源
- 升级控制器后,相关资源未能自动重建
- 回滚到0.8.0版本后,问题依然存在
根本原因分析
经过深入调查,发现问题的根本原因在于:
-
版本严格匹配要求:Actions Runner Controller要求控制器和运行器组件的版本必须完全一致,即使是小版本升级(如0.8.0到0.8.1)也需要严格匹配。
-
遗留资源影响:系统中存在旧版本(0.7.0)的helm release残留,虽然对应的Pod并未运行,但仍对系统产生了干扰。
-
自动清理机制:当控制器检测到版本不匹配时,会主动清理相关资源,而不是保留资源并标记为不可用状态。
解决方案
正确的升级流程应该是:
- 首先卸载所有autoscaling runner sets(gha-runner-scale-set实例)
- 升级控制器版本
- 重新安装运行器组件
这种顺序确保了版本一致性,避免了资源被意外删除的情况。
最佳实践建议
-
升级顺序:始终遵循"先卸载运行器组件→升级控制器→重新安装运行器组件"的升级流程。
-
版本检查:在升级前,使用
helm list命令检查系统中是否存在旧版本的残留release。 -
监控机制:设置对scale set删除事件的监控告警,及时发现版本不匹配问题。
-
权限管理:在多团队环境中,确保运行器组件所有者能够查看相关资源状态,即使他们无法直接访问控制器日志。
技术实现考量
从技术实现角度看,当前设计选择自动删除不匹配资源而非标记为不可用状态,主要基于以下考虑:
- 资源效率:避免无用的运行器实例持续消耗集群资源
- 安全考量:避免引入复杂的webhook机制
- 明确性:删除操作比状态标记更能引起用户注意
然而,这种设计在多团队环境中确实会带来一定的可观测性挑战。未来版本可能会考虑在资源删除前添加更明显的警告信息,或提供配置选项来控制这一行为。
总结
Actions Runner Controller的版本管理机制要求严格,这是为了确保CRD变更的有效性和系统的稳定性。用户在进行版本升级时,必须严格按照官方文档推荐的顺序操作,并注意检查系统中可能存在的旧版本残留。理解这一机制后,可以避免类似问题的发生,确保自托管运行器的平稳运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00