探秘Morpheus:Cypher在Apache Spark中的力量
1、项目介绍
Morpheus是一个开源项目,它将业界广泛使用的Cypher查询语言引入了Apache Spark™世界。这个项目由开放Cypher项目维护,旨在为Spark提供强大的图形数据处理和查询能力。尽管项目目前不再积极维护,但其潜力依然值得挖掘。
2、项目技术分析
Morpheus基于Spark的DataFrame API构建,允许跨多个数据源集成并支持多图查询。利用Spark的Catalyst优化器,它可以高效地运行分析型图查询,并能将结果以图的形式返回,方便创建数据处理管道。此外,Morpheus还提供了与GraphX库的接口融合。
Morpheus当前实现了Cypher的一个子集,包括对多重图的支持——这是Cypher的一个重要特性。该项目设计了一个数据源API,可以自定义数据导入器,方便接入外部图数据。
3、项目及技术应用场景
Morpheus主要面向开发者、大数据整合专家以及数据科学家。对于数据科学家来说,Morpheus可以帮助他们整合多种不同的数据源,将这些数据转化为单一的图形结构进行研究。通过Cypher查询,可以从大规模数据中提取出感兴趣的子图,进一步用于高级分析或导出供后续处理。
例如,数据分析师可以用Morpheus进行复杂的数据汇总,通过图形化的方式揭示数据之间的关联性,从宏观层面理解数据模式,同时也能够深入到细节信息进行钻取。
4、项目特点
- 多数据源集成:支持Hive、Neo4j、关系数据库(JDBC)和文件存储系统的数据导入。
- Cypher支持:部分实现Cypher查询语言,支持复杂的图形查询。
- 图形处理管道:查询结果可返回为新的图形,创建灵活的数据处理流程。
- API丰富:构建于Spark DataFrame之上,与Spark SQL和GraphX无缝集成。
- 自定义数据源:数据源API支持自定义数据导入器,扩展性强。
开始使用Morpheus
使用Morpheus最简单的方法是通过Scala。你可以通过Gradle构建项目,并将依赖项添加到你的项目中。项目提供了简单的示例代码,展示如何从DataFrame创建一个图形,然后执行Cypher查询。
请注意,Morpheus支持Spark 2.4系列和Scala 2.12版本。对于更晚版本的Spark,可能需要手动构建。
总的来说,虽然Morpheus已经进入预发布阶段并且不再积极维护,但是其提供的功能和技术仍然具有很大的价值。如果你正在寻找一种方式在Spark上实现图形查询和数据分析,那么Morpheus值得一试。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00