探秘Morpheus:Cypher在Apache Spark中的力量
1、项目介绍
Morpheus是一个开源项目,它将业界广泛使用的Cypher查询语言引入了Apache Spark™世界。这个项目由开放Cypher项目维护,旨在为Spark提供强大的图形数据处理和查询能力。尽管项目目前不再积极维护,但其潜力依然值得挖掘。
2、项目技术分析
Morpheus基于Spark的DataFrame API构建,允许跨多个数据源集成并支持多图查询。利用Spark的Catalyst优化器,它可以高效地运行分析型图查询,并能将结果以图的形式返回,方便创建数据处理管道。此外,Morpheus还提供了与GraphX库的接口融合。
Morpheus当前实现了Cypher的一个子集,包括对多重图的支持——这是Cypher的一个重要特性。该项目设计了一个数据源API,可以自定义数据导入器,方便接入外部图数据。
3、项目及技术应用场景
Morpheus主要面向开发者、大数据整合专家以及数据科学家。对于数据科学家来说,Morpheus可以帮助他们整合多种不同的数据源,将这些数据转化为单一的图形结构进行研究。通过Cypher查询,可以从大规模数据中提取出感兴趣的子图,进一步用于高级分析或导出供后续处理。
例如,数据分析师可以用Morpheus进行复杂的数据汇总,通过图形化的方式揭示数据之间的关联性,从宏观层面理解数据模式,同时也能够深入到细节信息进行钻取。
4、项目特点
- 多数据源集成:支持Hive、Neo4j、关系数据库(JDBC)和文件存储系统的数据导入。
- Cypher支持:部分实现Cypher查询语言,支持复杂的图形查询。
- 图形处理管道:查询结果可返回为新的图形,创建灵活的数据处理流程。
- API丰富:构建于Spark DataFrame之上,与Spark SQL和GraphX无缝集成。
- 自定义数据源:数据源API支持自定义数据导入器,扩展性强。
开始使用Morpheus
使用Morpheus最简单的方法是通过Scala。你可以通过Gradle构建项目,并将依赖项添加到你的项目中。项目提供了简单的示例代码,展示如何从DataFrame创建一个图形,然后执行Cypher查询。
请注意,Morpheus支持Spark 2.4系列和Scala 2.12版本。对于更晚版本的Spark,可能需要手动构建。
总的来说,虽然Morpheus已经进入预发布阶段并且不再积极维护,但是其提供的功能和技术仍然具有很大的价值。如果你正在寻找一种方式在Spark上实现图形查询和数据分析,那么Morpheus值得一试。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00