🤗 Transformers 教程
2024-08-07 08:02:57作者:乔或婵
1. 项目介绍
Transformer 是由 Hugging Face 团队维护的一个强大库,它集成了多种预训练模型,用于自然语言处理(NLP)和多模态任务。该项目不仅提供了广泛支持的深度学习框架(如 PyTorch 和 TensorFlow),还包含一个活跃的社区和模型共享平台,使研究者和开发者能够轻松地下载、使用、微调并分享模型。
2. 项目快速启动
安装 Transforme
在你的 Python 环境中,可以通过运行以下命令安装 Transformers 库:
pip install transformers
使用预训练模型
以下是如何使用预训练的 BERT 模型进行文本分类的基本示例:
from transformers import BertTokenizer, BertForSequenceClassification
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello, how are you?", padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
# 获取预测类别
_, predicted = torch.max(outputs.logits, dim=1)
print(predicted.item())
3. 应用案例和最佳实践
- 微调模型:你可以用自己收集的数据对预训练模型进行微调以适应特定任务。
- 多模态任务:除了 NLP,Transformers 还支持视觉和音频处理模型,可以应用于图像问答、视频分类等场景。
- 模型整合:通过 Transformers 的接口,可以方便地将不同的模型组件结合,实现新的架构创新。
4. 典型生态项目
- 🤗 Transformers 本身是整个生态系统的核心,提供基础模型和工具包。
- Hugging Face Model Hub 是一个模型仓库,用户可以上传、分享和查找各种经过训练的模型。
- 🤗 Datasets 库,是另一个配套项目,提供了大量预处理好的数据集供训练和测试。
- Hugging Face Spaces 是一个在线环境,允许用户在浏览器上交互式地体验和分享基于 Transformers 的应用程序。
通过这些资源,开发人员可以在 Transformers 生态系统中无缝地集成和扩展他们的工作,从而推动 NLP 和相关领域的创新。
以上就是关于 Hugging Face 的 Transformers 库的基础介绍和使用指南。深入了解项目,您可以阅读其官方文档和示例代码,进一步挖掘其潜在的应用价值。祝您在自然语言处理的世界里探索愉快!
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
探索开源漫画阅读器ComicFlow:安装与使用教程 《lest测试框架的安装与使用教程》 《DS3232RTC库的安装与使用教程》 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入理解CascaDB:安装与使用教程 《macOS Cross toolchain for Linux和*BSD的安装与使用教程》 《SkyFireEMU的安装与使用教程》 探索音频合成的艺术:Tonic开源项目入门教程 深入探索Android JniBitmapOperations:安装与使用教程 深入浅出:mapnik-vector-tile的安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
51
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
62
16
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
8
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27