🤗 Transformers 教程
2024-08-07 08:02:57作者:乔或婵
1. 项目介绍
Transformer 是由 Hugging Face 团队维护的一个强大库,它集成了多种预训练模型,用于自然语言处理(NLP)和多模态任务。该项目不仅提供了广泛支持的深度学习框架(如 PyTorch 和 TensorFlow),还包含一个活跃的社区和模型共享平台,使研究者和开发者能够轻松地下载、使用、微调并分享模型。
2. 项目快速启动
安装 Transforme
在你的 Python 环境中,可以通过运行以下命令安装 Transformers 库:
pip install transformers
使用预训练模型
以下是如何使用预训练的 BERT 模型进行文本分类的基本示例:
from transformers import BertTokenizer, BertForSequenceClassification
import torch
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
inputs = tokenizer("Hello, how are you?", padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
# 获取预测类别
_, predicted = torch.max(outputs.logits, dim=1)
print(predicted.item())
3. 应用案例和最佳实践
- 微调模型:你可以用自己收集的数据对预训练模型进行微调以适应特定任务。
- 多模态任务:除了 NLP,Transformers 还支持视觉和音频处理模型,可以应用于图像问答、视频分类等场景。
- 模型整合:通过 Transformers 的接口,可以方便地将不同的模型组件结合,实现新的架构创新。
4. 典型生态项目
- 🤗 Transformers 本身是整个生态系统的核心,提供基础模型和工具包。
- Hugging Face Model Hub 是一个模型仓库,用户可以上传、分享和查找各种经过训练的模型。
- 🤗 Datasets 库,是另一个配套项目,提供了大量预处理好的数据集供训练和测试。
- Hugging Face Spaces 是一个在线环境,允许用户在浏览器上交互式地体验和分享基于 Transformers 的应用程序。
通过这些资源,开发人员可以在 Transformers 生态系统中无缝地集成和扩展他们的工作,从而推动 NLP 和相关领域的创新。
以上就是关于 Hugging Face 的 Transformers 库的基础介绍和使用指南。深入了解项目,您可以阅读其官方文档和示例代码,进一步挖掘其潜在的应用价值。祝您在自然语言处理的世界里探索愉快!
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219